• 제목/요약/키워드: Contents Similarity

검색결과 466건 처리시간 0.024초

코드 분포의 선형 회귀를 이용한 프로그램 유사성 분석 (Similarity Analysis of Programs through Linear Regression of Code Distribution)

  • 임현일
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권7호
    • /
    • pp.1357-1363
    • /
    • 2018
  • 정보 기술의 발전과 더불어 인공 지능 및 기계 학습 분야는 다양한 응용 분야에서 성능을 인정받고 있으며, 다양한 응용 분야로 확대되고 있다. 본 논문에서는 기계 학습 방법을 응용한 소프트웨어 분석 방법을 제안한다. 소프트웨어의 특성을 표현하기 위해 소프트웨어의 코드 분포를 분석하고 이 정보를 기계 학습 방법인 선형 회귀를 통해 분석함으로써 유사 소프트웨어를 분석할 수 있는 방법을 제안한다. 소프트웨어의 특성은 프로그램 내에 포함된 명령어에 의해 표현될 수 있으며, 명령어의 분포 정보를 학습 데이터로 활용하였다. 또한, 학습 데이터를 통한 학습 과정은 소프트웨어 유사성 분석을 위한 선형 회귀 모델을 구성한다. 본 논문에서 제안한 방법은 구현 및 실험을 통해 정확성을 검증한다. 본 논문에서 제안한 방법은 소프트웨어의 유사성을 판단할 수 있는 기본 기술로 활용될 수 있을 것으로 기대된다. 또한 기계 학습 방법을 통한 소프트웨어 분석 기술에 응용될 수 있을 것으로 기대된다.

전자 저널 구독 정보 및 웹 이용 로그를 활용한 참고문헌 기반 저널 추천 기법 (The Technique of Reference-based Journal Recommendation Using Information of Digital Journal Subscriptions and Usage Logs)

  • 이해성;김순영;김재훈;김정환
    • 인터넷정보학회논문지
    • /
    • 제17권5호
    • /
    • pp.75-87
    • /
    • 2016
  • 전자 학술 정보 유통의 확대에 따라 날로 증가되는 학술 콘텐츠 서비스 수요에 부응하기 위하여 보다 효과적인 학술 콘텐츠 추천 시스템 개발이 요구된다. 학술 콘텐츠 추천 시스템은 정보 소비자의 과거 이용 내역을 기반으로 각 소비자 선호(preference)에 맞는 학술 콘텐츠를 제공함으로써 콘텐츠 이용성을 보다 효과적으로 향상 시킬 수 있다. 본 논문에서는 특정 기관에 소속된 사용자의 선호에 더욱 부합하는 학술 콘텐츠를 제공하기 위하여 기관의 전자 저널 구독 정보 및 웹 이용 로그를 활용한 저널 추천 기법을 제안한다. 제안하는 추천 기법에서는 기관 사용자의 저널 선호도를 효과적으로 예측하기 위하여 기관 유사도(Institution similarity), 그리고 참고문헌의 인용 관계 데이터를 기반으로 저널 유사도(Journal similarity) 및 저널 중요도(Journal importance)를 산출하여 최종적으로 기관 맞춤형 저널 추천 항목을 구성하게 된다. 또한, 제안하는 추천기법이 적용된 기관 맞춤형 저널 추천 시스템 프로토타입을 개발한다. 개발된 저널 추천 시스템은 각 기관의 저널 선호도 예측을 위하여 활용되는 웹 이용로그를 효과적으로 수집하고 이를 추천 기법에 활용하기 용이한 데이터로 가공 처리 하여 별도의 데이터베이스에 저장하여 추천 기법의 저널 선호도 예측을 위한 기반 데이터로 활용한다. 마지막으로 우리는 기존 추천 기법들과의 비교 성능 평가를 통해 제안 기법의 차별성과 우수성을 보인다.

우리나라 수학 교과서의 닮음 도입 및 정의에 관한 비판적 논의 (A Critical Analysis of the Introduction of Similarity in Korean Mathematics Textbooks)

  • 임재훈;박교식
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제19권3호
    • /
    • pp.393-407
    • /
    • 2009
  • 이 논문은 우리나라 7차 중학교 교과서의 닮음 도입 및 정의의 특징을 비판적으로 분석한 것이다. 연구의 결과는 다음과 같다. 첫째, 초등학교에서 도형의 닮음 관련 내용이 삭제된 것을 고려하여 중학교에서 닮음 도입시 확대도나 축도를 그려 보는 풍부한 경험 속에서 '일정한 비율'의 의미가 내면화되게 할 필요가 있다. 둘째, 중학교 교과서에서 도형을 확대 또는 축소하는 방식 및 닮음 정의에는 서로 다른 두 가지 방식이 있으며, 그 각각의 방식이 지닌 한계에 유의할 필요가 있다. 셋째, 주어진 모눈을 화대 또는 축소한 모눈 위에 닮은 도형을 그리는 활동을 제시할 필요가 있다. 끝으로, 닮음 정의에 나오는 '닮음인 관계'라는 표현과 관련하여, '많음'을 교육과정 문서에 용어로 제시하는 것이 적절한지 재고할 필요가 있다.

  • PDF

SRS: Social Correlation Group based Recommender System for Social IoT Environment

  • Kang, Deok-Hee;Choi, Hoan-Suk;Choi, Sang-Gyu;Rhee, Woo-Seop
    • International Journal of Contents
    • /
    • 제13권1호
    • /
    • pp.53-61
    • /
    • 2017
  • Recently, the Social Internet of Things (IoT), the follow-up of the IoT, has been studied to expand the existing IoT services, by integrating devices into the social network of people. In the Social IoT environment, humans, devices and digital contents are connected with social relationships, to guarantee the network navigability and establish levels of trustworthiness. However, this environment handles massive data, including social data of humans (e.g., profile, interest and relationship), profiles of IoT devices, and digital contents. Hence, users and service providers in the Social IoT are exposed to arbitrary data when searching for specific information. A study about the recommender system for the Social IoT environment is therefore needed, to provide the required information only. In this paper, we propose the Social correlation group based Recommender System (SRS). The SRS generates a target group, depending on the social correlation of the service requirement. To generate the target group, we have designed an architecture, and proposed a procedure of the SRS based on features of social interest similarity and principles of the Collaborative Filtering and the Content-based Recommender System. With simulation results of the target scenario, we present the possibility of the SRS to be adapted to various Social IoT services.

최소 DTW 거리 기반의 데이터 시퀀스 색인 기법 (Sequence Data Indexing Method based on Minimum DTW Distance)

  • 길기정;송석일;송재종;이석필;장세진;이종설
    • 한국콘텐츠학회논문지
    • /
    • 제11권12호
    • /
    • pp.52-59
    • /
    • 2011
  • 이 논문에서는 시퀀스 데이터베이스에서 효과적인 유사 검색을 지원하기 위한 색인 기법을 제안한다. 제안하는 색인 기법에서는 데이터 시퀀스에 대한 필터링 효과를 얻기 위해, 최소 DTW 거리를 새롭게 제안한다. 최소 DTW 거리는 유사한 데이터 시퀀스 그룹과 질의 시퀀스 사이의 최소거리를 측정하는 방법이다. 최소 DTW 거리는 계층적인 색인 구조를 통해서 시퀀스 데이터베이스를 필터링하면서 유사도 검색을 수행할 수 있도록 한다. 마지막으로, 실험을 통해서 제안하는 방법의 우수성을 입증한다.

공통 Phrase의 관계 그래프와 Suffix Tree 문서 모델을 이용한 문서 군집화 기법 (Document Clustering with Relational Graph Of Common Phrase and Suffix Tree Document Model)

  • 조윤호;이상근
    • 한국콘텐츠학회논문지
    • /
    • 제9권2호
    • /
    • pp.142-151
    • /
    • 2009
  • 기존의 문서 군집화 기법 NSTC은 문서 군집화 과정 내에서 TF-IDF를 이용하여 문서간 유사도를 측정한다. 본 논문에서는 TF-IDF가 아닌, 공통 Phrase의 관계 그래프를 이용한 새로운 문서간 유사도 측정을 제안한다. 이 방법은 문서 집합 내의 공통 Phrase들의 관계를 나타낸 관계 그래프를 통해 공통 Phrase의 가중치를 부여하는 방법을 제시한다. 또한 실험을 통해 NSTC와 비교하여 본 논문에서 제안한 문서간 유사도 측정 기법이 문서 군집화에 더욱 효과적임을 보였다.

Content similarity matching for video sequence identification

  • Kim, Sang-Hyun
    • International Journal of Contents
    • /
    • 제6권3호
    • /
    • pp.5-9
    • /
    • 2010
  • To manage large database system with video, effective video indexing and retrieval are required. A large number of video retrieval algorithms have been presented for frame-wise user query or video content query, whereas a few video identification algorithms have been proposed for video sequence query. In this paper, we propose an effective video identification algorithm for video sequence query that employs the Cauchy function of histograms between successive frames and the modified Hausdorff distance. To effectively match the video sequences with a low computational load, we make use of the key frames extracted by the cumulative Cauchy function and compare the set of key frames using the modified Hausdorff distance. Experimental results with several color video sequences show that the proposed algorithm for video identification yields remarkably higher performance than conventional algorithms such as Euclidean metric, and directed divergence methods.

Video Content Indexing using Kullback-Leibler Distance

  • Kim, Sang-Hyun
    • International Journal of Contents
    • /
    • 제5권4호
    • /
    • pp.51-54
    • /
    • 2009
  • In huge video databases, the effective video content indexing method is required. While manual indexing is the most effective approach to this goal, it is slow and expensive. Thus automatic indexing is desirable and recently various indexing tools for video databases have been developed. For efficient video content indexing, the similarity measure is an important factor. This paper presents new similarity measures between frames and proposes a new algorithm to index video content using Kullback-Leibler distance defined between two histograms. Experimental results show that the proposed algorithm using Kullback-Leibler distance gives remarkable high accuracy ratios compared with several conventional algorithms to index video content.

Design of Virtual Reality Contents for Upper-limbs Rehabilitation Using Kinect Sensor

  • Park, Myeong-Chul;Jung, Hyon-Chel;Kang, Hyun-Syug
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권10호
    • /
    • pp.85-90
    • /
    • 2015
  • The purpose of this study is to establish the contents of virtual reality for a patient who suffers from various diseases and needs Upper-limbs Rehabilitation. First, the system provides the movement content to remote patient. Then system is tracking information in the joints by using Kinect Sensor. And similarity comparison of a given content to diagnose the movement of the patient. The tracked movement information is stored in the database with similarity and is delivered to the rehabilitation therapist. The result of this study will enhance the effectiveness and concentration of the rehabilitation therapy and be used as basic data evaluating the function of the Upper-limbs Rehabilitation.

Improvement of ASIFT for Object Matching Based on Optimized Random Sampling

  • Phan, Dung;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • 제9권2호
    • /
    • pp.1-7
    • /
    • 2013
  • This paper proposes an efficient matching algorithm based on ASIFT (Affine Scale-Invariant Feature Transform) which is fully invariant to affine transformation. In our approach, we proposed a method of reducing similar measure matching cost and the number of outliers. First, we combined the Manhattan and Chessboard metrics replacing the Euclidean metric by a linear combination for measuring the similarity of keypoints. These two metrics are simple but really efficient. Using our method the computation time for matching step was saved and also the number of correct matches was increased. By applying an Optimized Random Sampling Algorithm (ORSA), we can remove most of the outlier matches to make the result meaningful. This method was experimented on various combinations of affine transform. The experimental result shows that our method is superior to SIFT and ASIFT.