• Title/Summary/Keyword: Contention

Search Result 503, Processing Time 0.026 seconds

Design of Contention Free Parallel MAP Decode Module (메모리 경합이 없는 병렬 MAP 복호 모듈 설계)

  • Chung, Jae-Hun;Rim, Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.1
    • /
    • pp.39-49
    • /
    • 2011
  • Turbo code needs long decoding time because of iterative decoding. To communicate with high speed, we have to shorten decoding time and it is possible with parallel process. But memory contention can cause from parallel process, and it reduces performance of decoder. To avoid memory contention, QPP interleaver is proposed in 2006. In this paper, we propose MDF method which is fit to QPP interleaver, and has relatively short decoding time and reduced logic. And introduce the design of MAP decode module using MDF method. Designed decoder is targetted to FPGA of Xilinx, and its throughput is 80Mbps maximum.

Effective Packet Transmission Scheme in Multirate WLAN (다중 전송률 지원 무선랜에서 효율적인 패킷 전송 기법)

  • Kim, Nam-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.168-175
    • /
    • 2006
  • To cope with channel variation, wireless networks such as IEEE 802.11 WLAN provide multiple transmission rates by employing different channel modulation and coding schemes. However, the coexistence of different transmission rates degrades the total system performance of the network. In order to eliminate this performance abnormality and improve protocol capacity, we propose a new Packet transmission algorithm, the RAT(Rate-Adapted Transmission) scheme. The RAT scheme distributes the wireless channel fairly based on the channel occupancy time. Moreover, it efficiently transmits packets even in a single station using rate-based queue management. Therefore, the RAT scheme obtains not only the inter-rate contention gain among stations but also the intra-rate contention gain among connections in a single station.

Dynamic Contention Window Control Algorithm Using Genetic Algorithm in IEEE 802.11 Wireless LAN Systems for Logistics Information Systems (물류 정보시스템을 위한 IEEE 802.11 무선랜 시스템에서 유전자 알고리듬을 이용한 Dynamic Contention Window 제어 알고리듬)

  • Lee, Sang-Heon;Choi, Woo-Yong;Lee, Sang-Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.10-19
    • /
    • 2009
  • Wireless LAN systems have been widely implemented for supporting the wireless internet services especially in the hotspot areas such as hospitals, homes, conference rooms, and so on. Compared with wired LAN systems, wireless LAN systems have the advantages of the users' mobility support and low implementation and maintenance costs. IEEE 802.11 wireless LAN systems employ the backoff algorithm to avoid contentions among STAs when two or more STAs attempt to transmit their data frames simultaneously. The MAC efficiency can be improved if the CW values are adaptively changed according to the channel state of IEEE 802.11 wireless LANs. In this paper, a dynamic contention window control algorithm is proposed using the genetic algorithm to improve the MAC throughput of IEEE 802.11 wireless LANs.

Adaptive Binary Negative-Exponential Backoff Algorithm Based on Contention Window Optimization in IEEE 802.11 WLAN

  • Choi, Bum-Gon;Lee, Ju-Yong;Chung, Min-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.896-909
    • /
    • 2010
  • IEEE 802.11 medium access control (MAC) employs the distributed coordination function (DCF) as the fundamental medium access function. DCF operates with binary exponential backoff (BEB) in order to avoid frame collisions. However it may waste wireless resources because collisions occur when multiple stations are contending for frame transmissions. In order to solve this problem, a binary negative-exponential backoff (BNEB) algorithm has been proposed that uses the maximum contention window size whenever a collision occurs. However, when the number of contending stations is small, the performance of BNEB is degraded due to the unnecessarily long backoff time. In this paper, we propose the adaptive BNEB (A-BNEB) algorithm to maximize the throughput regardless of the number of contending stations. A-BNEB estimates the number of contending stations and uses this value to adjust the maximum contention window size. Simulation results show that A-BNEB significantly improves the performance of IEEE 802.11 DCF and can maintain a high throughput irrespective of the number of contending stations.

A Model for Analyzing the Performance of Wireless Multi-Hop Networks using a Contention-based CSMA/CA Strategy

  • Sheikh, Sajid M.;Wolhuter, Riaan;Engelbrecht, Herman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2499-2522
    • /
    • 2017
  • Multi-hop networks are a low-setup-cost solution for enlarging an area of network coverage through multi-hop routing. Carrier sense multiple access with collision avoidance (CSMA/CA) is frequently used in multi-hop networks. Multi-hop networks face multiple problems, such as a rise in contention for the medium, and packet loss under heavy-load, saturated conditions, which consumes more bandwidth due to re-transmissions. The number of re-transmissions carried out in a multi-hop network plays a major role in the achievable quality of service (QoS). This paper presents a statistical, analytical model for the end-to-end delay of contention-based medium access control (MAC) strategies. These strategies schedule a packet before performing the back-off contention for both differentiated heterogeneous data and homogeneous data under saturation conditions. The analytical model is an application of Markov chain theory and queuing theory. The M/M/1 model is used to derive access queue waiting times, and an absorbing Markov chain is used to determine the expected number of re-transmissions in a multi-hop scenario. This is then used to calculate the expected end-to-end delay. The prediction by the proposed model is compared to the simulation results, and shows close correlation for the different test cases with different arrival rates.

Channel Reservation based DCF MAC Protocol for Improving Performance in IEEE 802.11 WLANs (IEEE 802.11 무선 랜에서 성능 향상을 위한 채널 예약 기반 DCF MAC 프로토콜)

  • Hyun, Jong-Uk;Kim, Sunmyeng
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2159-2166
    • /
    • 2016
  • In the IEEE 802.11 DCF (Distributed Coordination Function) protocol, the binary exponential backoff algorithm is used to avoid data collisions. However, as the number of stations increases of, the collision probability tends to grow and the overall network performance is reduced. To solve this problem, this paper proposes a data transmission scheme based on the channel reservation method. In the proposed scheme, channel time is divided into reservation period and contention period. During the reservation period, stations succeeded in channel reservation transmit their own data packets in sequence without contention. During the contention period, each station sends its data packets through contentions as in DCF. During both the reservation period and the contention period, each station sends a request for channel reservation for the next reservation period to an AP (Access Point). After receiving such a channel reservation request from each station, the AP decides whether the reservation is succeeded and sends the result via a beacon frame to each station. Performance of the proposed scheme is analyzed through simulations. The simulation results show that the proposed scheme tends to reduce the collision probability of DCF and to improve the overall network performance.

Analysis of Three-Phase Multiple Access with Continual Contention Resolution (TPMA-CCR) for Wireless Multi-Hop Ad Hoc Networks

  • Choi, Yeong-Yoon;Nosratinia, Aria
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • In this paper, a new medium access control (MAC) protocol entitled three-phase multiple access with continual contention resolution (TPMA-CCR) is proposed for wireless multi-hop ad hoc networks. This work is motivated by the previously known three-phase multiple access (TPMA) scheme of Hou and Tsai [2] which is the suitable MAC protocol for clustering multi-hop ad hoc networks owing to its beneficial attributes such as easy collision detectible, anonymous acknowledgment (ACK), and simple signaling format for the broadcast-natured networks. The new TPMA-CCR is designed to let all contending nodes participate in contentions for a medium access more aggressively than the original TPMA and with continual resolving procedures as well. Through the systematical performance analysis of the suggested protocol, it is also shown that the maximum throughput of the new protocol is not only superior to the original TPMA, but also improves on the conventional slotted carrier sense multiple access (CSMA) under certain circumstances. Thus, in terms of performance, TPMA-CCR can provide an attractive alternative to other contention-based MAC protocols for multi-hop ad hoc networks.

Performance Analysis of ISDN D-Channel Access Protocol (ISDN D-채널 엑세스 프로토콜의 성능 분석)

  • 박성현;은종관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.7
    • /
    • pp.602-617
    • /
    • 1990
  • In this paper, we analyze the performance of D-channel access protocol at the S-reference point for the ISDN user network interface recommended by CCITT. For the case of multipoint access to D-channel, a queueing model of D-channel access protocol is proposed. The delay is analyzed by decomposing it into waiting queue delay and contention delay. The contention delay is decomposed further into vain contention delay and pure contention delay so the analysis of the priority queueing system with symmetrical and asymmetrical arrival rates may be applied. The numerical results obtained are compared with the results of the single station queueing system served by the non-preemptive priority.

  • PDF

A Fair Contention Channel Assignment Scheme for Emergency data -First-Priority MAC in Wireless Body Area Networks (WBAN에서 응급데이타 퍼스트 우선순위 MAC을 위한 공정한 경쟁 채널 할당 방법)

  • Lee, Jung-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.995-1002
    • /
    • 2018
  • A Contention Access Period(: CAP) with high contention in priority-based MAC protocols can result in higher number of collisions and retransmissions. High-Priority traffic dominates low-priority traffic during CAP depleting low-priority traffic, adversely affecting WBAN throughput, delay, and energy consumption. This paper proposes a Emergency data-First-Priority MAC(: EFP-MAC) superframe structure that is able to reduce contention in the CAP period, and provides a fair chance for low-priority traffic. As a result, the proposed Emergency data-First Priority MAC(; EFP-MAC) The Simulation results show that the proposed MAC achieves lower energy consumption, higher throughput and low latency than the IEEE 802.15.4 standard.

Limited Contention Scheme(LCS) to Reduce Collision in LR-WPAN (LR-WPAN에서 충돌을 줄이기 위한 제한경쟁 기법)

  • Ko, Su-Hwan;Lee, Jong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.310-317
    • /
    • 2008
  • Data collision in LR-WPAN(Low Rate Wireless Personal Area Network) causes retransmission of which energy consumption may reduce life of the entire network. Furthermore LR-WPAN is very sensitive to collision as it has relatively fewer frequencies of backoff retries. LCS(Limited Contention Scheme) suggested in this study is a way to transmit data by certain groups of the total nodes so that it can reduce possibilities of data collision and retransmission by decreasing the number of competing nodes. As a result LCS can increase a throughput and the life of the entire network. As using LCS in designing LR-WPAN in the future can extend battery life, LCS can be useful in any application that requires low energy consumption.