• 제목/요약/키워드: Content-based Image retrieval

검색결과 448건 처리시간 0.025초

Metadata Processing Technique for Similar Image Search of Mobile Platform

  • Seo, Jung-Hee
    • Journal of information and communication convergence engineering
    • /
    • 제19권1호
    • /
    • pp.36-41
    • /
    • 2021
  • Text-based image retrieval is not only cumbersome as it requires the manual input of keywords by the user, but is also limited in the semantic approach of keywords. However, content-based image retrieval enables visual processing by a computer to solve the problems of text retrieval more fundamentally. Vision applications such as extraction and mapping of image characteristics, require the processing of a large amount of data in a mobile environment, rendering efficient power consumption difficult. Hence, an effective image retrieval method on mobile platforms is proposed herein. To provide the visual meaning of keywords to be inserted into images, the efficiency of image retrieval is improved by extracting keywords of exchangeable image file format metadata from images retrieved through a content-based similar image retrieval method and then adding automatic keywords to images captured on mobile devices. Additionally, users can manually add or modify keywords to the image metadata.

영상 검색을 위한 적응적 컴포넌트 분석 시스템 설계 (The Design of Adaptive Component Analysis System for Image Retrieval)

  • 최철;박장춘
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권2호
    • /
    • pp.19-26
    • /
    • 2004
  • 본 논문에서는 내용 기반 영상 검색 시스템(Content Based Image Retrieval System)의 특징 추출(feature extraction)과 분석(analysis)을 위한 방법으로 적응적 컴포넌트 분석(ACA: Adaptive Component Analysis)을 제안하고 있다. 검색을 위해서 영상에서 추출된 특징들은 영상의 도메인(domain)에 따라 적절하게 적용해야만 좋은 검색 결과를 얻을 수 있다. 이러한 조건을 만족시키기 위한 방법으로 본 논문에서는 검색 측정도(retrieval measurement)를 제안하고 있다. ACA는 알고리즘과 시스템적인 관점에서 볼 때, 기존의 내용 기반 영상 검색을 위한 중간 단계라고 할 수 있으며, 검색 속도향상 및 성능 개선에 목표를 두고 있다

  • PDF

영상 검색을 위한 적응적 컴포넌트 분석 시스템 설계 (The Design of Adaptive Component Analysis System for Image Retrieval)

  • 최철;박장춘
    • 한국컴퓨터정보학회지
    • /
    • 제12권1호
    • /
    • pp.9-19
    • /
    • 2004
  • 본 논문에서는 내용 기반 영상 검색 시스템(Content Based Image Retrieval System)의 특징 추출(feature extraction)과 분석(analysis)을 위한 방법으로 적응적 컴포넌트 분석(ACA: Adaptive Component Analysis)을 제안하고 있다. 검색을 위해서 영상에서 추출된 특징들은 영상의 도메인(domain)에 따라 적절하게 적용해야만 좋은 검색 결과를 얻을 수 있다. 이러한 조건을 만족시키기 위한 방법으로 본 논문에서는 검색 측정도(retrieval measurement)를 제안하고 있다. ACA는 알고리즘과 시스템적인 관점에서 볼 때, 기존의 내용 기반 영상 검색을 위한 중간 단계라고 할 수 있으며, 검색 속도 향상 및 성능 개선에 목표를 두고 있다.

  • PDF

내용기반 영상정보 검색기술에 관한 이론적 고찰 (A Study on Content-based Image Information Retrieval Technique)

  • 노진구
    • 한국도서관정보학회지
    • /
    • 제31권1호
    • /
    • pp.229-258
    • /
    • 2000
  • The growth of digital image an video archives is increasing the need for tools that efficiently search through large amount of visual dta. Retrieval of visual data is important issue in multimedia database. We are using contented-based visual data retrieval method for efficient retrieval of visual data. In this paper, we introduced fundamental techniques using characteristic values of image data and indexing techniques required for content-based visual retrieval. In addition we introduced content-based visual retrieval system for use of digital library.

  • PDF

내용기반 이미지 및 비디오 검색 시스템 성능분석에 관한 연구 (A Study on the Performance Analysis of Content-based Image & Video Retrieval Systems)

  • 김성희
    • 한국비블리아학회지
    • /
    • 제15권2호
    • /
    • pp.97-115
    • /
    • 2004
  • 본 논문에서는 먼저 이미지 및 비디오 내용기반 검색 시스템 개념 및 유형을 분석 한 후 현재 상용중인 내용기반 검색시스템 5개를 선정해서 기존의 선행연구 및 각 시스템 홈페이지를 방문하여 성능을 분석 하였다. 그 결과 멀티미디어 정보검색의 효율성을 개선하기 위해서는 내용기반 검색과 주석기반 검색을 병행하는 것이 바람직한 것으로 나타났다.

  • PDF

영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템 (Content-Based Image Retrieval System using Feature Extraction of Image Objects)

  • 정세환;서광규
    • 산업경영시스템학회지
    • /
    • 제27권3호
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.

객체 데이터베이스를 이용한 내용기반 이미지 검색 전문가 시스템 (An Expert System for Content-based Image Retrieval with Object Database)

  • 김영민;김성인
    • 제어로봇시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.473-482
    • /
    • 2008
  • In this paper we propose an expert system for content-based image retrieval with object database. The proposed system finds keyword by using knowledge-base and feature of extracted object, and retrieves image by using keyword based image retrieval method. The system can decrease error of image retrieval and save running time. The system also checks whether similar objects exist or not. If not, user can store information of object in object database. Proposed system is flexible and extensible, enabling experts to incrementally add more knowledge and information. Experimental results show that the proposed system is more effective than existing content-based image retrieval method in running time and precision.

Using Context Information to Improve Retrieval Accuracy in Content-Based Image Retrieval Systems

  • Hejazi, Mahmoud R.;Woo, Woon-Tack;Ho, Yo-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.926-930
    • /
    • 2006
  • Current image retrieval techniques have shortcomings that make it difficult to search for images based on a semantic understanding of what the image is about. Since an image is normally associated with multiple contexts (e.g. when and where a picture was taken,) the knowledge of these contexts can enhance the quantity of semantic understanding of an image. In this paper, we present a context-aware image retrieval system, which uses the context information to infer a kind of metadata for the captured images as well as images in different collections and databases. Experimental results show that using these kinds of information can not only significantly increase the retrieval accuracy in conventional content-based image retrieval systems but decrease the problems arise by manual annotation in text-based image retrieval systems as well.

  • PDF

바다-$IV/I^2R$: 고차원 이미지 색인 구조를 이용한 효율적인 내용 기반 이미지 검색 시스템의 설계와 구현 (BADA-$IV/I^2R$: Design & Implementation of an Efficient Content-based Image Retrieval System using a High-Dimensional Image Index Structure)

  • 김영균;이장선;이훈순;김완석;김명준
    • 한국정보처리학회논문지
    • /
    • 제7권2S호
    • /
    • pp.678-691
    • /
    • 2000
  • A variety of multimedia applications require multimedia database management systems to manage multimedia data, such as text, image, and video, as well as t support content-based image or video retrieval. In this paper we design and implement a content-based image retrieval system, BADA-IV/I$^2$R(Image Information Retrieval), which is developed based on BADA-IV multimedia database management system. In this system image databases can be efficiently constructed and retrieved with the visual features, such as color, shape, and texture, of image. we extend SQL statements to define image query based on both annotations and visual features of image together. A high-dimensional index structure, called CIR-tree, is also employed in the system to provide an efficient access method to image databases. We show that BADA-IV/I$^2$R provides a flexible way to define query for image retrieval and retrieves image data fast and effectively: the effectiveness and performance of image retrieval are shown by BEP(Bull's Eye Performance) that is used to measure the retrieval effectiveness in MPEG-7 and comparing the performance of CIR-tree with those of X-tree and TV-tree, respectively.

  • PDF

Content Based Image Retrieval Using Combined Features of Shape, Color and Relevance Feedback

  • Mussarat, Yasmin;Muhammad, Sharif;Sajjad, Mohsin;Isma, Irum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권12호
    • /
    • pp.3149-3165
    • /
    • 2013
  • Content based image retrieval is increasingly gaining popularity among image repository systems as images are a big source of digital communication and information sharing. Identification of image content is done through feature extraction which is the key operation for a successful content based image retrieval system. In this paper content based image retrieval system has been developed by adopting a strategy of combining multiple features of shape, color and relevance feedback. Shape is served as a primary operation to identify images whereas color and relevance feedback have been used as supporting features to make the system more efficient and accurate. Shape features are estimated through second derivative, least square polynomial and shapes coding methods. Color is estimated through max-min mean of neighborhood intensities. A new technique has been introduced for relevance feedback without bothering the user.