콘텐츠 산업의 꾸준한 성장에 따라 수많은 콘텐츠 중에서 개인의 취향에 적합한 콘텐츠를 자동으로 추천하는 연구의 필요성이 증가하고 있다. 콘텐츠 자동 추천의 정확도를 향상시키기 위해서는 콘텐츠에 대한 사용자의 선호 이력을 바탕으로 하는 기존 추천 기법과 더불어 콘텐츠의 메타데이터 및 콘텐츠 자체에서 추출할 수 있는 특징을 융합한 추천 기법이 필요하다. 본 연구에서는 음악의 소리 데이터로부터 태그 정보를 분류하는 LSTM 기반의 모델을 학습하고 분류된 태그 정보를 음악의 메타 데이터로 추가하여, 그래프 임베딩 시 콘텐츠의 특징까지 고려할 수 있는 KPRN 기반의 새로운 콘텐츠 추천 방법을 제안한다. 카카오 아레나 데이터 기반 실험 결과, 본 연구의 제안 방법은 기존의 임베딩 기반 추천 방법보다 우수한 추천 정확도를 보였다.
In this paper, we propose a recommendation system based on the latent factor model using matrix factorization, which is one of the most commonly used collaborative filtering algorithms for recommendation systems. In particular, by introducing the concept of creating a list of recommended content and a list of non-preferred recommended content, and removing the non-preferred recommended content from the list of recommended content, we propose a method to ultimately increase the satisfaction. The experiment confirmed that using a separate list of non-preferred content to find non-preferred content increased precision by 135%, accuracy by 149%, and F1 score by 72% compared to using the existing recommendation list. In addition, assuming that users do not view non-preferred content through the proposed algorithm, the average evaluation score of a specific user used in the experiment increased by about 35%, from 2.55 to 3.44, thereby increasing user satisfaction. It has been confirmed that this algorithm is more effective than the algorithms used in existing recommendation systems.
As the Internet is more embedded in people's lives, Internet users draw on new Internet applications to express themselves through "user-created content (UCC)." In addition, there is a noticeable shift from text-centered contents mainly posted on bulletin boards to multimedia contents such as images and videos on UCC web sites. The changes require different way of recommendations comparing to traditional products or contents recommendation on the Internet. This paper aims to design UCC recommendation methods with user behavior data and contents metadata such as tags and titles, and compare performances of the suggested methods. Real web logs data of a major Korean video UCC site was used to empirical experiments. The results of the experiments show that collaborative filtering technique based on similarity of UCC customers' preferences performs better than other content-based recommendation methods based on tag information and content metadata.
수많은 채널과 VoD 콘텐츠, 웹 콘텐츠들이 존재하는 콘텐츠 소비 환경에서의 추천은 이제 선택이 아닌 필수가 되었다. 현재 OTT서비스나 IPTV서비스에서도 많은 사람들이 선호하는 콘텐츠를 추천하거나 사용자가 시청한 콘텐츠와 유사한 콘텐츠들을 추천하는 등, 다양한 종류의 추천 서비스들이 제공되고 있다. 하지만 TV, IPTV와 같이 대체로 한 가구당 하나의 가입정보와 하나의 TV, 셋탑박스를 공유하는 TV를 통한 콘텐츠 시청환경의 경우, 하나의 가입정보에 1명 이상의 사용 이력이 쌓여 특정 사용자에 대한 추천을 제공하기에 어려움이 존재한다. 본 논문에서는 이러한 문제를 해결하기 위해 가족의 개념을 {사용자, 시간}으로 해석하여, 기존의 {사용자, 콘텐츠}로 정의하는 추천 관계를 {사용자, 시간, 콘텐츠}으로 확장하고 이를 딥러닝 기반으로 해결하는 방법을 제안한다. 제안한 방법을 통해 추천 성능을 정성적 정량적으로 평가하였으며, 기존의 시간대를 고려하지 않은 방법과 비교하여 추천 정확도가 향상됨을 확인할 수 있었다.
Combining collaborative filtering with some other technique is most common in hybrid recommender systems. As many recommended items from collaborative filtering seem to be similar with respect to content, the collaborative-content hybrid system suffers in terms of quality recommendation and recommending new items as well. To alleviate such problem, we have developed a novel method that uses a diversity metric to select the dissimilar items among the recommended items from collaborative filtering, which together with the input when fed into content space let us improve and include new items in the recommendation. We present experimental results on movielens dataset that shows how our approach performs better than simple content-based system and naive hybrid system
International Journal of Advanced Culture Technology
/
제8권4호
/
pp.167-176
/
2020
Recommendation Systems is the top requirements for many people and researchers for the need required by them with the proper suggestion with their personal indeed, sorting and suggesting doctor to the patient. Most of the rating prediction in recommendation systems are based on patient's feedback with their information regarding their treatment. Patient's preferences will be based on the historical behaviour of similar patients. The similarity between the patients is generally measured by the patient's feedback with the information about the doctor with the treatment methods with their success rate. This paper presents a new method of predicting Top Ranked Doctor's in recommendation systems. The proposed Recommendation system starts by identifying the similar doctor based on the patients' health requirements and cluster them using K-Means Efficient Clustering. Our proposed K-Means Clustering with Content Based Doctor Recommendation for Cancer (KMC-CBD) helps users to find an optimal solution. The core component of KMC-CBD Recommended system suggests patients with top recommended doctors similar to the other patients who already treated with that doctor and supports the choice of the doctor and the hospital for the patient requirements and their health condition. The recommendation System first computes K-Means Clustering is an unsupervised learning among Doctors according to their profile and list the Doctors according to their Medical profile. Then the Content based doctor recommendation System generates a Top rated list of doctors for the given patient profile by exploiting health data shared by the crowd internet community. Patients can find the most similar patients, so that they can analyze how they are treated for the similar diseases, and they can send and receive suggestions to solve their health issues. In order to the improve Recommendation system efficiency, the patient can express their health information by a natural-language sentence. The Recommendation system analyze and identifies the most relevant medical area for that specific case and uses this information for the recommendation task. Provided by users as well as the recommended system to suggest the right doctors for a specific health problem. Our proposed system is implemented in Python with necessary functions and dataset.
본 연구는 과학 학술정보 서비스 플랫폼 이용자의 정보 검색 편의성을 확보하고 적합한 정보의 획득에 소요되는 시간을 절약하기 위하여, 운영 중인 서비스 메뉴와 각 서비스 별 콘텐츠 정보를 제공하는 알고리즘 중 콘텐츠 추천 알고리즘을 최적화하고 그 결과를 비교평가 하는 것이다. 추천 정확도를 높이기 위해 이용자의 '전공' 항목을 기존 알고리즘에 추가하였으며, 기존 알고리즘과 최적화된 알고리즘을 통한 추천 결과의 성능평가를 수행하였다. 성능평가 결과 최적화된 알고리즘을 통해 이용자에게 제공되는 콘텐츠의 적합도가 21.2% 증가함을 파악하였다. 이용자에게 적합한 콘텐츠를 시스템에서 자동 도출하여 각 서비스 메뉴 별로 제공함으로써 정보 획득 시간을 단축하고, 연구정보로서 가치 있는 연구결과물의 생명주기를 연장할 수 있는 방안이라는 데 본 연구의 의의가 있다.
모바일 시장의 확장과 함께 멀티모달 미디어 콘텐츠의 제공을 위한 플랫폼이 다양해지고 있다. 멀티모달 미디어 콘텐츠에는 이종데이터들이 복합적으로 포함되어 있어 사용자들이 선호 콘텐츠를 선택하기 위해 시간과 노력이 요구된다. 따라서 본 논문에서는 추천을 위한 키워드 가중치를 이용한 멀티모달 미디어 콘텐츠 분류를 제안한다. 제안하는 방법은 멀티모달 미디어 콘텐츠의 텍스트 데이터에서 키워드 가중치를 통해 콘텐츠를 가장 잘 나타내는 키워드를 추출한다. 추출된 키워드를 기반으로 서브클래스를 갖는 장르 클래스를 생성하고 이에 적절한 멀티모달 미디어 콘텐츠를 분류한다. 또한 개인화된 추천을 위해 사용자의 선호도 평가를 진행하여 사용자의 콘텐츠 선호도 분석 결과를 기반으로 멀티모달 콘텐츠를 추천한다. 성능평가는 추천 결과의 정확도와 만족도를 통해 우수함을 검증한다. 이는 사용자가 선호하는 장르와 키워드를 모두 고려하여 추천하기 때문에 정확도는 74.62%, 만족도는 69.1%로 높게 나타난다.
추천 시스템은 지능적인 자동 결정을 생성하기 위해 사용자가 자주 사용한다. 영화 추천 시스템의 연구에서, 기존 접근 방식은 협업 및 콘텐츠 기반 필터링 기술을 사용한다. 협업 필터링은 사용자 유사성을 고려하는 반면, 콘텐츠 기반 필터링은 단일 사용자의 활동에 중점을 두고 있다. 또한 협업 필터링과 콘텐츠 기반 필터링을 결합한 혼합 필터링 접근법은 서로의 한계를 보완하기 위해 사용되고 있다. 최근엔 더 나은 추천 서비스를 제공하기 위해 사용자 간의 유사성을 찾는데 몇 가지 AI 기반 유사성 기법을 사용하고 있다. 본 논문은 기존의 다양한 영화 추천 시스템과 문제점 분석을 통해 가능한 해결책을 도출하여 유용한 확장 방안을 제공하는 것을 목표로 한다.
With the advent of ubiquitous computing environments, it has become increasingly important for applications to take full advantage of contextual information, such as the user's location, to offer greater services to the user without any explicit requests. In this paper, we propose context-aware active services based on context-aware middleware for URC systems (CAMUS). The CAMUS is a middleware that provides context-aware applications with a development and execution methodology. Accordingly, the applications based on CAMUS respond in a timely fashion to contextual information. This paper presents the system architecture of CAMUS and illustrates the content recommendation and control service agents with the properties, operations, and tasks for context-aware active services. To evaluate CAMUS, we apply the proposed active services to a TV application domain. We implement and experiment with a TV content recommendation service agent, a control service agent, and TV tasks based on CAMUS. The implemented content recommendation service agent divides the user's preferences into common and specific models to apply other recommendations and applications easily, including the TV content recommendations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.