• Title/Summary/Keyword: Content of chlorophyll

Search Result 1,207, Processing Time 0.024 seconds

WATER ACTIVITY AND PIGMENT DEGRADATION IN DRIED LAVERS STORED AT ROOM TEMPERATURE (건해태(김) 저장시의 수분활성과 색소분해반응)

  • LEE Kang-Ho;CHOI Ho-Yeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.6 no.1_2
    • /
    • pp.27-36
    • /
    • 1973
  • The effect of water activity on degradation of pigments in dried lavers, Porphyra tenera Kjellm. was examined when stored at room temperature for fifty days. Chlorophyll pigment was extracted with methanol-petroleum ether mixture solvent(2:1 v/v), partitioned in ether, and analysed spectrophotometrically at 662 nm as chlorophyll a. The degradation products of chlorophyll were isolated on sugar-starch column(85:15 w/w) with n-propanol-petroleum ether solution(1:200 v/v) as a developing solvent. The isolated green colored zones were analysed individually at the wavelengths of 650, 662, and 667 nm as allomerized product, chlorophyll a retained, and pheophytin formed respectively. Carotenoida were also extracted with the methanol mixture solvent, partitioned in ether, and finally redissolved in acetone after the evaporation of ether in a rotary vacuum evaporator. The total carotenoid content was measured as lutein at 450 nm. From the results, it is noted that the rate of chlorophyll degradation reached a minimum at 0.11 to 0.33 water activity while progressively increased at higher moisture levels resulting in rapid conversion of chlorophyll to pheophytin. At lower activity, autocatalysed oxidizing reaction like allomerization seemed prevailing the acid catalysed conversion reaction. The loss of carotenoid pigment was also greatly reduced at the range of 0.22 to 0.34 water activity with much faster oxidative degradation at both higher and extremely lower moisture levels. These two moisture levels indicated above at which the both pigments exhibited maximum stability are considerably higher than the BET monolayer moisture which appeared 7.91 percent on dry basis at Aw=0.10 calculated from the adsorption isothermal data of the sample at $20^{\circ}C$. The rate of pigment loss in heat treated samples at 60 and $100^{\circ}C$ for 2 hours prior to storage somewhat decreased, particularly at higher moisture levels although the final pigment retention was not much stabilized.

  • PDF

The simple assay of phosphinothricin acetyltransferase gene on the transgenic potato (형질전환 감자에서 제초제 저항성 유전자인 PAT gene의 간편한 확인)

  • 정재훈;양덕춘;방극수;최경화;한성수
    • Korean Journal of Plant Resources
    • /
    • v.12 no.4
    • /
    • pp.253-259
    • /
    • 1999
  • In this study, three simple methods were established to confirm the transgenic potato plants. The leaf disc was used in the first method. After leaf discs of transgenic and non-transgenic potato were transfered into the liquid MS medium with bialaphos 5mg/l, 25 days, the chlorosis occurred in the non-transgenic leaf discs while it could not find in the transgenic leaf discs, In the second method, shoot tips of potato were transferred into MS medium supplemented with 0.5mg/l bialaphos and 0.6% agar. After 7-10 days, a lot of roots developed from the transgenic shoot tip, but the non-transgenic shoot tip was dead. The third method was using chlorophyll contents. Leaf discs were transferred into the liquid MS medium with bialaphos 0.5 mg/l. After 15 days, the content of chlorophyll A in transgenic plant was at least 2.5 times higher than in non-transgenic plant. In addition, the PAT enzyme activity were detected in the transgenic potato, but not detected in normal potato.

  • PDF

Characteristics of Light Harvesting Chlorophyll-Protein Complex and Singlet Oxygen ($^1O_2$) Quenching in Leaf-burning Disease from Panax ginseng C. A. Meyer (인삼 Light Harvesting Chlorophyll Protein의 특성 및 엽소병에서 Singlet Oxygen($^1O_2$) Quenching)

  • 양덕조;이성택
    • Journal of Ginseng Research
    • /
    • v.13 no.2
    • /
    • pp.158-164
    • /
    • 1989
  • In order to determine the relationships between the lea(-burning disease and the light harvesting chlorophyll-protein (LHCP) complex in Panax ginseng C. A. Meyer, we investigated the chlorophyll-protein (CP) complex of the thylakoid membrane and its characteristics. In P. ginseng four Cp-complex bands determined by non-denaturing SDS-PAGE were identified CP I'(containing reaction center of photosystem I and LHCP I antennae), CP I (reaction center of photosystem I) LHCP II** (oligoform of LHCP II), and LHCP II (photosystem II antennae, CP 26 and CP 29) by Bassis and Dunahay's procedures. Under our experimental condition, the CP I band was only observed in P. ginseng and the band intensity of LHCP II** in P ginseng was higher than in spinach and soybean. There were differences in the absorption and fluorescence spectra and chlorophyll a/b ratio of the CP-complex bands between P. ginseng and other Plants. The Polypeptidr content of P. ginseng thylakoid was lower than in spinach and soybean thylakoid, and the Polypeptide profiles of P. ginseng was low band intensity, especially about 29-35 kD, 55 kD, and 60 kD, compared to spinach and soybean. The inhibitory effects of 2,5-dimethylfuran, specific singlet oxygen ($^1O_2$) quencher, showed that singlet oxygen destroyed 60% of chl.a, 90% of chl.b and 70% of carotenoid in bleaching P. ginseng with leaf-burning disease.

  • PDF

Effect of Shading and Growth Characteristics of Melilotus suaveolens Community (전동싸리 군락의 생장특성과 피음효과)

  • 박태규;송승달
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.187-193
    • /
    • 1998
  • Seasonal changes of nitrogen fixation and growth characteristics of Melilotus suaveolens population under different light conditions were quantitatively analyzed during growting period. Height growth of M. suaveolens population was promoted after April and the shade (site 2) showed 10-20% increase of height growth in compared with that of sunny (site 1). Seasonal changes of biomass were in creased after March, the biomass at site 1 attained 78.5% that of site 2 in May. Chlorophyll content was maintained high value from March to April but, Chlorophyll content of leaf at site 1 was decreased 11.7% compared to that of site 2 in May. The nitrogen content of each organ of M. suaveolens showed higher value in March and then decreased, the high nitrogen contents of reproductive organ were achieved at the flowering stage at site 1. The root nodule of M. suaveolens population appeared in March and showed maximum value in early June and decreased remarkably after July, the amount of nodule formation of M. suaveolens at site 2 showed higher than that of site 1. The nitrogen fixation activity of root nodule of M. suaveolens initiated with shoot growth and showed maximum value in mid April, and attained second peak in early June and then decreased after July. The total nitrogen fixation of the plant showed higher value at site 2 than that of site 1. From the overall results, M. suaveolens showed increased growth under half-shady, well ventilated barren soil than fertile sunny site.

  • PDF

Effects of Sulfur Dioxide on Pigments, Frotein Content and Photosystem II Activity of Barley and Corn Leaves (보리와 옥수수 잎의 색소, 단백질 함량 및 관계II 활성에 미치는 ${SO}^2$의 영향)

  • 정화숙
    • Journal of Plant Biology
    • /
    • v.25 no.3
    • /
    • pp.135-151
    • /
    • 1982
  • This investigation was carried out to clarify the changes of pigments and soluble protein, and photosystem II activity in the leaves of barley (${SO}_2$-sensitive) and corn (${SO}_2$-resistant) seedlings induced by the ${SO}_2$ fumigation (10, 50ppm). The pH changes of the leaf extract, the content of sulfite and sulfate, the activities of catalase, peroxidase, and polyphenoloxidase were compared in the leaves of barley and corn seedlings induced by ${SO}_2$ fumigation. The results are summarized as follows: An appreciable effect of pH change of leaf extract by ${SO}_2$ fumigation was observed in barley leaves (pH 6.10 to 5.18), but only a small change occurred in corn leaves (pH 5.66 to 5.50). The same pattern of pH changes was recorded when the solution of 0.2N HCl was added to leaf extract, providing lower buffering capacity of the barley leaves than corn leaves. After 2 hours of exposure to 10 ppm ${SO}_2$, the contents of ${SO}^{2-}_3$ and ${SO}^{2-}_4$ were increased in barley leaves, while only ${SO}^{2-}_4$ increased in corn leaves. After fumigation with 10ppm ${SO}_2$ for 2 hours, barley leaves showed significant decreases in activities of catalase, to 17% peroxidase, to 58%, and polyphenoloxidase, to 88%. Corn leaves showed increases in activities of peroxidase, to 136%, and polyphenoloxidase, to 128%. Absorption spectra of pigments obtained from ${SO}_2$-fumigated leaves were gradually decreased with the fumigation time increases, but the decrease was more significant in barley leaves. Fumigation with 50ppm ${SO}_2$ for 2 hours induced the greatest decomposition in carotenoid, followed by chlorophyll a and then chlorophyll b in barley leaves. The ratio of chlorophyll a/b was decreased from 4.1 to 3.6 in barley leaves, but in corn leaves it was maintained almost a constant level(4.9-4.8). The rate of decomposition of chlorophyll and carotenoid in corn leaves was very slow than those in the barley leaves. Fumigation with 50 ppm ${SO}_2$ for 2 hous, decreased the protein content of barley leaves to 59%, and that of corn leaves to 89%, and the extent of decrease in protein content was greater than that of pigments in barley and corn leaves. The rate of DCIP9dichlorophenol indophenol) photoreduction in ${SO}_2$-fumigated leaves was decreased to 18 and 67% in barley and corn leaves, respectively. However, DCIP photoreduction was considerably recovered about 32 and 92% with the addition of DPC(diphenylcarbazide) as an exogenous electron donor in barley and corn leaves, respectively.

  • PDF

Physiological Damages and Biochemical Alleviation to Ozone Toxicity in Five Species of genus Acer

  • Han, Sim-Hee;Kim, Du-Hyun;Lee, Kab-Yeon;Ku, Ja-Jung;Kim, Pan-Gi
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.551-560
    • /
    • 2007
  • We investigated physiological damages and biochemical alleviation of five species of genus Acer under ozone fumigation in order to assess their tolerant ability against ozone toxicity. At the end of 150 ppb $O_3$ fumigation, photosynthetic characteristics were measured, and chlorophyll contents, malondialdehyde (MDA) and antioxidative enzyme activities were analyzed in the leaves of five maple trees (Acer buergerianum, A. ginnala, A. mono, A. palmatum, and A. palmatum var. sanguineum). The reduction of chlorophyll (chl) a in ozone-exposed plants was 16.8% (A. buergerianum) to 26.7% (A. ginnala) of control plants. For the content of chi b, A. ginnala and A. palmatum var. sanguineum represented the high reduction of 26.3% and 23.6%, respectively. The highest reduction on the chi a:b ratio was observed in the leaves of A. palmatum. The reduction of net photosynthesis in five species varied from 2.4% to 37.6%. Among five species, A. ginnala showed remarkable reduction (37.6%) for net photosynthesis in comparison with control. Carboxylation efficiency differed significantly (P < 0.05) among species and between control and ozone treatment. The reduction of carboxylation efficiency was the highest in the leaves of A. ginnala (44.7%). A. palmatum var. sanguineum showed the highest increase (41.7%) for MDA content. The highest increase of superoxide dismutase (SOD) activity represented in A. palmatum (26.1%) and the increase of ascorbate peroxidase (APX) activity ranged from 16.5% (A. ginnala) to 49.1% (A. palmatum var. sanguineum). A. mono showed the highest increase (376.6%) of glutathione reductase (GR) activity under ozone fumigation and A. buergerianum also represented high increase (42.3%) of GR activity. Catalse (CAT) activity increased in the leaves of A. ginnala, A. palmatun and A. palmatum var. sanguineum under ozone exposure, whereas A. buergerianum and A. mono decreased in comparison with control plants. In conclusion, physiological markers such as chlorophyll content and photosynthesis that responded sensitively to $O_3$ in maple trees were considered as the very important indicators in order to evaluate the tolerance against $O_3$ stress, and parameters were closely related with each other. Among anti oxidative enzymes, SOD and APX might be contributed to alleviate to $O_3$ toxicity through the increase of activity in all maple trees. Therefore, these compounds can be used as a biochemical maker to assess the stress tolerance to $O_3$.

Changes of Chlorophylls and their Derivatives Contents during Storage of Green Onion, Leek and Godulbaegi Kimchi (파, 부추 및 고들빼기김치 숙성 중의 Chlorophyll 및 그 유도체의 함량변화)

  • 이종호;김경업;김성희;정효숙;유영법
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1071-1076
    • /
    • 1998
  • Threetypes of Korean traditional kimchi were prepared using green onion, leek or godulbaegi as raw materials and stored at 5oC and 20oC for 13 days. Changes in salt and ascorbic acid contents, pH and total acidity as well as the relationship of the decomposition of chlorophylls and the production of their derivatives were investigated. For the all kimchi samples tested, salt content was not significantly changed during storage at both temperatures, whereas pH and total acidity were decreased and increased, respectively. Especially their remarkable changes were shown at the third day of storage. Ascorbic acid content was remained at high level in the leek kimchi for the experimental period at both storage temperatures, meanwhile godulbaegi kimchi retained the least amount of ascorbic acid. Chlorophylls were decomposed to pheophytin and pheophorbide during storage at both storage temperatures, and this phenomenon was apparent at the third day of storage. Reduction of chlorophylls and increasements of its decomposed products such as pheophytin and pheophorbide were the least in leek kimchi and the greatest in godulbaegi kimchi during storage at both temperatures. These results indicate that decomposition of chlorophylls in kimchi and increasements of pheophytin and pheophorbide were closely related to the ascorbic acid content in kimchi.

  • PDF

Influence of Cadmium on Rubisco Activation in Canavalia ensiformis L. Leaves

  • Lee, Kyong-Ro;Roh, Kwang-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.94-100
    • /
    • 2003
  • We studied the effect of cadmium on chlorophylls and rubisco activation in Canavalia ensiformis L. leaves. Chlorophyll levels were reduced by 5.0 ${\mu}$M Cd. Rubisco activity at 5.0 ${\mu}$M Cd was significantly smaller than that at no treatment. Rubisco Content showed patterns of change similar to rubisco activity. These data suggest that rubisco activity was associated with an amount of rubisco protein, and that the activation and induction of rubisco is inhibited by Cd. The degree of intensity of 50 and 14.5 kD polypeptides identified as the large and small subunit of rubisco by SDS-PAGE analysis at 5.0 ${\mu}$M Cd was significantly lower than that at control, indicating Cd had a e f-fect on both subunits. Under the assumption that effects of Cd on rubisco may be r elated to rubisco activase, in addition to, its activity and content we re determined . The rubisco activase activity at 5.0 ${\mu}$M Cd was more decreased than the control. A similar change pattern was also observed in content of rubisco activase. Remarkable differences in the intensitiy of both the 45 kD and 41 kD band were found between at control and Cd-treatment. These results suggest that the change in the levels of rubisco activase leads to a subsequent alter action of rubisco levels.

Studies on the Growth of Freshwater Algae by Biocides I. On the Growth of Chlamydomonas reinhardii (Biocide에 의한 담수조류의 생장에 관한 연구 I. Chlamydomonas reinhardii의 생장에 미치는 영향)

  • 이은경
    • Journal of Plant Biology
    • /
    • v.25 no.3
    • /
    • pp.113-121
    • /
    • 1982
  • The effects of 6 biocides on the growth of Chlamydomonas reinhardii in pure culture were studied. For the batch culture assay of biocides, the growth rate in control tubes should be compared with in the test tubes and the effective concentration calculated on the basis of the percent decrease in growth rate at the different toxicant concentration. The concentrations at which 50% decrease in growth rate was observed are $40{\mu}g$/l for butachlor and $350{\mu}g$/l for alachlor in herbicide, $900{\mu}g$/l for phenazine-5-oxide and $3,400{\mu}g$/l for isoprothiolane in fungicide, and $3,330{\mu}g$/l for fenthion and $332,500{\mu}g$/l for trichlorfon in insecticide. The inhibitory effect on the growth of Chlamydomonas reinhardii by the treatment of various biocide concentrations was decreased in order of herbicide>fungicide>insecticide. Chlorophyll and carotenoid content per cell were increased, whereas chlorophyll a/b ratio was hardly affected by biocides. The effects of biocides on pigment content were also decreased in order of herbicide>fungicide>insecticide, which suggested the relationship between the effect of biocides on the pigment content and inhibition of growth rate.

  • PDF

Cadmium Toxicity and Calcium Effect on Growth and Photosynthesis of Tobacco (담배의 생장과 광합성에 미치는 카드뮴의 독성과 이에 대한 칼슘의 효과)

  • Roh Kwang Soo;Chin Hiw Seung
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.453-460
    • /
    • 2005
  • This investigation was performed to study Cd toxicity and the influence of Ca on Cd toxicity in growth, and photosynthetic pigments and enzymes in tobacco. Cd inhibited both growth and level of chlorophyll, but the inhibition was compensated by the treatment of Ca. Especially, chlorophyll content was significantly increased by the combination of Cd and Ca treatment compared with Cd treatment alone. In addition, activity and content of rubisco by Cd treatment was also significantly lesser than the non-treated control. The highly reduced activity of rubisco was minimized by the combined treatment of Ca to Cd. Rubisco activase activity and content also showed a pattern of change similar to the rubisco level, suggesting that Cd- and Ca-induced changes of rubisco could be caused by rubisco activase.