• Title/Summary/Keyword: Content layer

Search Result 1,666, Processing Time 0.028 seconds

Enhancement of γ-aminobutyric Acid Production by Combination of Barley Leaf and Corn Silk and Its Fermentation with Lactic Acid Bacteria (보리 잎과 옥수수 수염의 혼합과 유산균 발효를 이용한 γ-aminobutyric acid 생산 증진)

  • Kim, Hyung-Joo;Yoon, Young-Geol
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.1
    • /
    • pp.171-185
    • /
    • 2017
  • ${\gamma}$-aminobutyric acid (GABA) is a non-proteinogenic amino acid biosynthesized through decarboxylation of L-glutamic acid by glutamic acid decarboxylase. GABA is believed to play a role in defense against stress in plants. In humans, it is known as one of the major inhibitory neurotransmitters in the central nervous system, exerting anti-hypertensive and anti-diabetic effects. In this report, we wanted to enhance the GABA production from the barley leaf and corn silk by culturing them with lactic acid bacteria (LAB). The barley leaf and corn silk were mixed with various weight combinations and were fermented with Lactobacillus plantarum in an incubator at $30^{\circ}C$ for 48 h. After extracting the fermented mixture with hot water, we evaluated the GABA production by thin layer chromatography and GABase assay. We found that the fermented mixture of the barley leaf and corn silk in a nine to one ratio contained a higher level of GABA than other ratios, meaning that the intermixture and fermentation technique was effective in increasing the GABA content. We also tested several biological activities of the fermented extracts and found that the extracts of the fermented mixture showed improved antioxidant activities than the non-fermented extracts and no indication of cytotoxicity. These results suggest that our approach on combining the barley leaf and corn silk and its fermentation with LAB could lead to the possibility of the development of functional foods with high levels of GABA content and improved biological activities.

A study for High Efficiency Dewatering of Sludge Contained Fine Particles (미세입자(微細粒子)를 함유(含有)한 슬러지의 고효율(高效率) 탈수(脫水) 연구)

  • Lee, Jung-Eun;Lee, Jae-Keun
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.36-43
    • /
    • 2006
  • There was some difficulty dewatering properties due to small porosity diameter of cake, when pigment sludge contained fine particle was formed by cake under the dewatering. It was difficult to dewater the sludge with fine particles with the conventional mechanical dewatering method. This study was to improve the dewatering rate as discharging the water from porosity of cake easily, supplying the low heat to the cake layer. Thermal dewatering equipment of piston type to keep up constant temperature on the cake was set up and relative experiment was conducted for sludge of 200 g with fine pigment particle. As test results. filtration of 176.8 g, cake weight of 19.4 g, cake thickness of 4.2 mm was measured, and it was analyzed that the water content of cake was 47 wt% and dewatering velocity, which moaned the residual d교 sloid amount per dewatering area, was $2.1DS\;m^{2}{\cdot}cycle$. This results showed that filtration increased, cake weight and thickness decreased and dewatering velocity increased against mechanical dewatering method. And water content of cake decreased about 30%, so the result which dewatering rate improved was drew generally. The reason is that the inner vapor pressure working at the cake porosity increased as applying the low heat to the cake layer, which lead to discharge the water from porosity easily. Therefore, this study was estimated by the useful technology for sludge reduction.

Water repellency of glass surface coated with fluorosilane coating solutions containing nanosilica (나노실리카를 함유한 불소실란으로 코팅된 유리 표면의 발수 특성)

  • Lee, Soo;Kim, Keun Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.531-540
    • /
    • 2019
  • Hydrophilic and hydrophobic nanosilica and tetraethyl orthosilicate (TEOS) as a coupling agent was used to form a coarse spike structure as well as an excellent reactive hydroxyl groups on the glass surface. Then, a second treatment was carried out using a trichloro-(1H,1H,2H,2H)perfluorooctylsilane(TPFOS) solution for ultimate water repellent glass surface formation. The formation of hydrophobic coating layer on glass surface using silica aerosol, which is hydrophobic nanosilica, was not able to form a durable hydrophobic coating layer due to the absence of reactive -OH groups on the surface of nanosilica. On the other hand, a glass surface was first coated with a coating liquid prepared with hydrophilic hydroxyl group-containing nanosilica and hydrolyzed TEOS, and then coated with a TPFOS solution to introduce a hydrophobic surface on glass having a water contact angle of $150^{\circ}$ or more. The sliding angle of the coated glass was less than $1^{\circ}$, which meant the surface had a super water-repellent property. In addition, as the content of hydrophilic nanosilica increased, the optical transmittance decreased and the optical transmittance also decreased after 2nd coating with the TPFOS solution. The super-hydrophobic property of the coated glass was remained up to 50 times of rubbing durability test, but only hydrophobic property was shown after 200 times of rubbing durability test. Conclusively, the optimal coating conditions was double 1st coatings with the HP3 coating solution having a hydrophilic nanosilica content of 0.3 g, and subsequent 2nd coating with the TPFOS solution. It is believed that the coating solution thus prepared can be used as a surface treatment agent for solar cells where light transmittance is also important.

Fundamental Study on Earthwork Quality Control Based on Intelligent Compaction Technology (지능형 다짐기술을 통한 토공사 품질관리를 위한 기초 연구)

  • Baek, Sung-Ha;Kim, Jin-Young;Cho, Jin-Woo;Kim, Namgyu;Jeong, Yeong-Hoon;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.45-56
    • /
    • 2020
  • In this paper, intelligent compaction (IC) technology and the earthwork quality control specifications based on IC were analyzed, and the field study was conducted to investigate the relationship between the representative IC value CMV (Compaction Meter Value) and spot test results (plate bearing test and field density test). As the number of roller passes increased, both the CMV and spot test results increased. However, point-by-point comparison between CMV and spot test results yielded poor quality correlations; this is because the ununiform stiffness of the underlying layer and the moisture content of the lift layer affected the CMV and spot test results, respectively. Most international specifications related to IC requires knowledge of the IC values and their relationships with the soil properties obtained by the traditional spot tests. Therefore, for the successful implementation of intelligent compaction technology into earthwork construction practice, the number of roller passes as well as the lift thickness and the moisture content of the soil should be carefully considered.

Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses (동해 전역에 장기간 발달하는 아표층 엽록소 최대층과 수괴의 물리 화학적 특성과의 상관관계)

  • Rho, TaeKeun;Lee, Tongsup;Kim, Guebuem;Chang, Kyung-Il;Na, TaeHee;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.413-430
    • /
    • 2012
  • To understand the scales of the spatial distribution and temporal duration of the subsurface chlorophyll-a maximum (SCM) observed in the Ulleung Basin of the East Sea, we analyzed physical and chemical data collected during the East Asian Seas Time-series-I (EAST-I) program. The SCM layer occurred at several observation lines from the Korea Strait to $37.9^{\circ}N$ in the Ulleung Basin during August of 2008 and 2011. At each observation line, the SCM layer extended from the coast to about 200 km off the coast. The SCM layer was observed between 30 and 40 m depth in the Ulleung Basin as well as in the northwestern Japan Basin along $132.3^{\circ}E$ from $38^{\circ}N$ to $42.3^{\circ}N$ during July 2009, and was observed around 50 m depth in the northeastern Japan Basin ($135-140^{\circ}E$ and $40-45^{\circ}N$) during July 2010. From these observed features, we hypothesize that the SCM layer observed in the Ulleung Basin may exist in most of the East Sea and may last for at least half-year (from the early May to late October). The nutrient supply mechanism for prolonged the SCM layer in the East Sea was not known, but it may be closely related to the horizontal advection of the nutrient rich and low oxygen waters observed in the Korea Strait between a 50 m depth to near the bottom. The prolonged development of the SCM layer in the Ulleung Basin may result in high primary production and would also be responsible for the high organic carbon content observed in the surface sediment of the region.

Distribution of water Masses and Chemical Properties in the East Sea of korea in Spring 2005 (2005년 춘계 동해 중남부 해역의 수괴 분포 및 화학적 특성 연구)

  • Kim, Y.S.;Hwang, J.D.;Youn, S.H.;Yoon, S.C.;Hwang, U.G.;Shim, J.M.;Lee, Y.H.;Jin, H.G.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.235-243
    • /
    • 2007
  • In order to understand the water mass properties in the southern location of the East Sea in the Korean coasts, the vertical distributions (down to 2,000 m deep) of water temperature, salinity, and dissolved inorganic nutrients were determined in April of 2005. The water mass of the surveyed location showed distinct vertical layers; highly saline surface, surface mixing layer, and thermocline of low temperature and salinity. The water layer below 300 m was characterized by water temperature lower than $1^{\circ}C$ and salinity 34.06, showing a representative water mass of the East Sea. The inorganic nutrients rapidly increased from 200m in the northern and southern parts around Ulleung Basin. A marked environmental difference was found between two layers separated by thermocline. The upper layer of the thermocline was oligotrophic and the vertical distribution of nutrient was very stable. In the water layer between 100 and 200m the nutrients slightly increased but remained still stable. From southern coasts to northeastern Ulleung, the water mass properties were site specific; the thickness of the surface mixed layer and nutricline showed a trend diminishing toward the northern locations probably due to diminished influence of Tsushima water. Redfield ratio (N:P=16:1) based on the ratio of chemical composition in organism revealed that nitrogen value continuously decreased to less than 16 with the water depth down to loom from the thermocline. The value in the water layer deeper than 100 to 200 m, thereafter, showed an increasing trend (over 16). This result was further supported by the finding of lower chlrophyll a content in the layer.

  • PDF

Effect of the Difference in the High Molecular Weight Fraction of Whey Between Cow's Milk and Goat's Milk on Creaming Phenomenon

  • Masuda, T.;Taniguchi, T.;Suzuki, K.;Sakai, T.;Morichi, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.351-357
    • /
    • 2001
  • The rapid formation of a cream line cannot be observed in raw goat's milk standing at a low temperature. Although the poor creaming ability of goat's milk has been considered to be due to the small size of milk fat globules and the lack of euglobulin capable of being adsorbed on milk fat globules, there is much left to study. The present work attempted to elucidate a factor for poor creaming ability of goat's milk. The creaming ability of the experimental milks reconstituted from creams and skim milks separated from cow's milk or goat's milk was measured by the volume of the cream layer and the fat content of bottom layer. The polypeptides composition of the P1 the fraction (i.e., the high molecular weight fraction eluted near the void volume obtained by the gel filtration of whey) and milk fat globule membrane prepared from both milks were compared. It was found that the promotion of creaming originated from goat's skim milk was lower than that from cow's skim milk. The P1 fraction in goat's skim milk was less than that in cow's skim milk. The polypeptide (M.W. $4.3{\times}10^4$), found in the P1 fraction of cow's milk was not found in the P1 fraction of goat's milk. It is suggested that the poor creaming ability of goat milk is caused mainly by the difference from cow milk in the amount and the composition of the P1 fraction.

Fold Cracking of High Grammage Coated Paper Depending on Pulp Composition and Structure of Base Paper (도공원지의 원료 조성 및 구조에 따른 고평량 도공지의 접힘 터짐)

  • Sim, Kyujeong;Youn, Hye Jung;Oh, Kyudeok;Lee, Hak Lae;Yeu, Seung Uk;Lee, Yong Min
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.38-45
    • /
    • 2015
  • Fold cracking is one of quality troubles of coated papers. In this study, the fold cracking of high grammage ($250g/m^2$) coated paper made with the different pulp composition and layer structure of base paper was investigated. The single layered, high grammage base paper was prepared by mixing of hardwood and softwood bleached kraft pulp fibers with the different ratios. The high grammage coated paper showed the higher fold cracking than low grammage coated paper because of the increase in thickness. The increase in the content of softwood pulp fibers reduced the fold cracking in the case of high grammage coated paper. When the creasing process was conducted before folding process, the fold cracking of coated paper decreased. By manufacturing the base paper with multiply structure, the fold cracking of coated paper could be reduced significantly, especially when the BCTMP and OCC were used as a middle layer and the creasing process was carried out. The delamination of layers in base paper affected the fold cracking positively.

Low-temperature Deposition of Cu(In,Ga)Se2 Absorber using Na2S Underlayer (Na2S 하부층을 이용한 Cu(In,Ga)Se2 광흡수층의 저온증착 및 Cu(In,Ga)Se2 박막태양전지에의 응용)

  • Shin, Hae Na Ra;Shin, Young Min;Kim, Ji Hye;Yun, Jae Ho;Park, Byung Kook;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.28-35
    • /
    • 2014
  • High-efficiency in $Cu(In,Ga)Se_2$ (CIGS) solar cells were usually achieved on soda-lime glass substrates due to Na incorporation that reduces deep-level defects. However, this supply of sodium from sodalime glass to CIGS through Mo back electrode could be limited at low deposition temperature. Na content could be more precisely controlled by supplying Na from known amount of an outside source. For the purpose, an $Na_2S$ layer was deposited on Mo electrode prior to CIGS film deposition and supplied to CIGS during CIGS film. With the $Na_2S$ underlayer a more uniform component distribution was possible at $350^{\circ}C$ and efficiency was improved compared to the cell without $Na_2S$ layer. With more precise control of bulk and surface component profile, CIGS film can be deposited at low temperature and could be useful for flexible CIGS solar cells.

Study on Design and Performance of Microwave Absorbers of Carbon Nanotube Composite Laminates (탄소나노튜브 복합재 적층판을 활용한 전파흡수체의 설계 및 성능에 대한 연구)

  • Kim, Jin-Bong;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.38-45
    • /
    • 2011
  • In this paper, we present an optimization method for the single Dallenbach-layer type microwave absorbers composed of E-glass fabric/epoxy composite laminates. The composite prepreg containing carbon nanotubes (CNT) was used to control the electrical property of the composites laminates. The design technology using the genetic algorithm was used to get the optimal thicknesses of the laminates and the filler contents at various center frequencies, for which the numerical model of the complex permittivity of the composite laminate was incorporated. In the optimal design results, the content of CNT increased in proportion to the center frequency, but, on the contrary, the thickness of the microwave absorbers decreased. The permittivity and reflection loss are measured using vector network analyzer and 7 mm coaxial airline. The influence of the mismatches in between measurement and prediction of the thickness and the complex permittivity caused the shift of the center frequency, blunting of the peak at the center frequency and the reduction of the absorbing bandwidth.