• Title/Summary/Keyword: Content based Filtering

Search Result 227, Processing Time 0.059 seconds

A New Approach Combining Content-based Filtering and Collaborative Filtering for Recommender Systems (추천시스템을 위한 내용기반 필터링과 협력필터링의 새로운 결합 기법)

  • Kim, Byeong-Man;Li, Qing;Kim, Si-Gwan;Lim, En-Ki;Kim, Ju-Yeon
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.332-342
    • /
    • 2004
  • With the explosive growth of information in our real life, information filtering is quickly becoming a popular technique for reducing information overload. Information filtering technique is divided into two categories: content-based filtering and collaborative filtering (or social filtering). Content-based filtering selects the information based on contents; while collaborative filtering combines the opinions of other persons to make a prediction for the target user. In this paper, we describe a new filtering approach that seamlessly combines content-based filtering and collaborative filtering to take advantages from both of them, where a technique using user profiles efficiently on the collaborative filtering framework is introduced to predict a user's preference. The proposed approach is experimentally evaluated and compared to conventional filtering. Our experiments showed that the proposed approach not only achieved significant improvement in prediction quality, but also dealt with new users well.

Combining Collaborative, Diversity and Content Based Filtering for Recommendation System

  • Shrestha, Jenu;Uddin, Mohammed Nazim;Jo, Geun-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.602-609
    • /
    • 2007
  • Combining collaborative filtering with some other technique is most common in hybrid recommender systems. As many recommended items from collaborative filtering seem to be similar with respect to content, the collaborative-content hybrid system suffers in terms of quality recommendation and recommending new items as well. To alleviate such problem, we have developed a novel method that uses a diversity metric to select the dissimilar items among the recommended items from collaborative filtering, which together with the input when fed into content space let us improve and include new items in the recommendation. We present experimental results on movielens dataset that shows how our approach performs better than simple content-based system and naive hybrid system

  • PDF

A Prospective Extension Through an Analysis of the Existing Movie Recommendation Systems and Their Challenges (기존 영화 추천시스템의 문헌 고찰을 통한 유용한 확장 방안)

  • Cho Nwe Zin, Latt;Muhammad, Firdaus;Mariz, Aguilar;Kyung-Hyune, Rhee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.1
    • /
    • pp.25-40
    • /
    • 2023
  • Recommendation systems are frequently used by users to generate intelligent automatic decisions. In the study of movie recommendation system, the existing approach uses largely collaboration and content-based filtering techniques. Collaborative filtering considers user similarity, while content-based filtering focuses on the activity of a single user. Also, mixed filtering approaches that combine collaborative filtering and content-based filtering are being used to compensate for each other's limitations. Recently, several AI-based similarity techniques have been used to find similarities between users to provide better recommendation services. This paper aims to provide the prospective expansion by deriving possible solutions through the analysis of various existing movie recommendation systems and their challenges.

Harmonic Mean Weight by Combining Content Based Filtering and Collaborative Filtering in a Recommender System (내용 기반 여과와 협력적 여과의 병합을 통한 추천 시스템에서 조화 평균 가중치)

  • 정경용;류중경;강운구;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.239-250
    • /
    • 2003
  • Recent recommender system user a method of combining collaborative filtering system and content based filtering system in order to slove the problem of the Sparsity and First-Rater in collaborative filtering system. In this paper, to make up for the prediction accuracy in hybrid Recommender system, the harmonic mean weight(CBCF_harmonic_mean) is used for calculating the user similarity weight. After setting up the threshold as 45 considering the performance of content based filtering, we apply significance weight of n/45 to user similarity weight. To estimate the performance of the proposed method, it if compared with that of combing both the existing collaborative filtering system and the content- based filtering system. As a result, it confirms that the suggested method is efficient at improving the prediction accuracy as solving problems of the exiting collaborative filtering system.

Automatic Preference Rating using User Profile in Content-based Collaborative Filtering System (내용 기반 협력적 여과 시스템에서 사용자 프로파일을 이용한 자동 선호도 평가)

  • 고수정;최성용;임기욱;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1062-1072
    • /
    • 2004
  • Collaborative filtering systems based on {user-document} matrix are effective in recommending web documents to user. But they have a shortcoming of decreasing the accuracy of recommendations by the first rater problem and the sparsity. This paper proposes the automatic preference rating method that generates user profile to solve the shortcoming. The profile in this paper is content-based collaborative user profile. The content-based collaborative user profile is generated by combining a content-based user profile with a collaborative user profile by mutual information method. Collaborative user profile is based on {user-document} matrix in collaborative filtering system, thus, content-based user profile is generated by relevance feedback in content-based filtering systems. After normalizing combined content-based collaborative user profiles, it automatically rates user preference by reflecting normalized profile in {user-document}matrix of collaborative filtering systems. We evaluated our method on a large database of user ratings for web document and it was certified that was more efficient than existent methods.

A Study of PICS/RDF-Based Internet Content Rating System: Issues Related to Freedom of Expression (PICS/RDF 기반 인터넷 내용 등급 시스템 연구: 표현의 자유를 중심으로)

  • Kim, You-Seung
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.3
    • /
    • pp.271-297
    • /
    • 2007
  • Since the use of the Internet has proliferated, the availability of illegal and harmful content has been a great concern to both governments and Internet users. Among various solutions for issues related to such content, Internet content filtering technologies have been developed for enabling users to deal with harmful content. In recent years, commercial filtering has become massively popular. Many parents, teachers and even governments have chosen commercial filtering software as a feasible technical solution for protecting minors from harmful information on the Internet. The Internet content filtering software market has grown significantly. However, Internet content filtering software has led to intense debate among civil liberties groups, They deem this to be censorship and argue that Internet filtering technologies are simply unworkable because they have inherent weaknesses. They are critical of the fact that most filtering has violated free speech rights and will eventually wipe out honor and controversial, yet innocent incidences of free speech on the Internet. In this article Internet content filtering, in particular PICS/RDF-based label filtering, so-called Internet content rating system, will be explored and its advantages and drawbacks relating to end-users' autonomy and freedom of expression will be discussed.

Weighted Window Assisted User History Based Recommendation System (가중 윈도우를 통한 사용자 이력 기반 추천 시스템)

  • Hwang, Sungmin;Sokasane, Rajashree;Tri, Hiep Tuan Nguyen;Kim, Kyungbaek
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.6
    • /
    • pp.253-260
    • /
    • 2015
  • When we buy items in online stores, it is common to face recommended items that meet our interest. These recommendation system help users not only to find out related items, but also find new things that may interest users. Recommendation system has been widely studied and various models has been suggested such as, collaborative filtering and content-based filtering. Though collaborative filtering shows good performance for predicting users preference, there are some conditions where collaborative filtering cannot be applied. Sparsity in user data causes problems in comparing users. Systems which are newly starting or companies having small number of users are also hard to apply collaborative filtering. Content-based filtering should be used to support this conditions, but content-based filtering has some drawbacks and weakness which are tendency of recommending similar items, and keeping history of a user makes recommendation simple and not able to follow up users preference changes. To overcome this drawbacks and limitations, we suggest weighted window assisted user history based recommendation system, which captures user's purchase patterns and applies them to window weight adjustment. The system is capable of following current preference of a user, removing useless recommendation and suggesting items which cannot be simply found by users. To examine the performance under user and data sparsity environment, we applied data from start-up trading company. Through the experiments, we evaluate the operation of the proposed recommendation system.

Combining Collaborative, Diversity and Content Based Filtering for Recommendation System (협업적 여과와 다양성, 내용기반 여과를 혼합한 추천 시스템)

  • Shrestha, Jenu;Uddin, Mohammed Nazim;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.1
    • /
    • pp.101-115
    • /
    • 2008
  • Combining collaborative filtering with some other technique is most common in hybrid recommender systems. As many recommended items from collaborative filtering seem to be similar with respect to content, the collaborative-content hybrid system suffers in terms of quality recommendation and recommending new items as well. To alleviate such problem, we have developed a novel method that uses a diversity metric to select the dissimilar items among the recommended items from collaborative filtering, which together with the input when fed into content space let us improve and include new items in the recommendation. We present experimental results on movielens dataset that shows how our approach performs better than simple content-based system and naive hybrid system.

  • PDF

Reinforcement Learning Algorithm Based Hybrid Filtering Image Recommender System (강화 학습 알고리즘을 통한 하이브리드 필터링 이미지 추천 시스템)

  • Shen, Yan;Shin, Hak-Chul;Kim, Dae-Gi;Hong, Yo-Hoon;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2012
  • With the advance of internet technology and fast growing of data volume, it become very hard to find a demanding information from the huge amount of data. Recommender system can solve the delema by helping a user to find required information. This paper proposes a reinforcement learning based hybrid recommendation system to predict user's preference. The hybrid recommendation system combines the content based filtering and collaborate filtering, and the system was tested using 2000 images. We used mean abstract error(MAE) to compare the performance of the collaborative filtering, the content based filtering, the naive hybrid filtering, and the reinforcement learning algorithm based hybrid filtering methods. The experiment result shows that the performance of the proposed hybrid filtering performance based on reinforcement learning is superior to other methods.

Discovery of User Preference in Recommendation System through Combining Collaborative Filtering and Content based Filtering (협력적 여과와 내용 기반 여과의 병합을 통한 추천 시스템에서의 사용자 선호도 발견)

  • Ko, Su-Jeong;Kim, Jin-Su;Kim, Tae-Yong;Choi, Jun-Hyeog;Lee, Jung-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.684-695
    • /
    • 2001
  • Recent recommender system uses a method of combining collaborative filtering system and content based filtering system in order to solve sparsity and first rater problem in collaborative filtering system. Collaborative filtering systems use a database about user preferences to predict additional topics. Content based filtering systems provide recommendations by matching user interests with topic attributes. In this paper, we describe a method for discovery of user preference through combining two techniques for recommendation that allows the application of machine learning algorithm. The proposed collaborative filtering method clusters user using genetic algorithm based on items categorized by Naive Bayes classifier and the content based filtering method builds user profile through extracting user interest using relevance feedback. We evaluate our method on a large database of user ratings for web document and it significantly outperforms previously proposed methods.

  • PDF