• Title/Summary/Keyword: Content Recommendation Algorithm

Search Result 56, Processing Time 0.056 seconds

Implementation of a Recommendation system using the advanced deep reinforcement learning method (고급 심층 강화학습 기법을 이용한 추천 시스템 구현)

  • Sony Peng;Sophort Siet;Sadriddinov Ilkhomjon;DaeYoung, Kim;Doo-Soon Park
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.406-409
    • /
    • 2023
  • With the explosion of information, recommendation algorithms are becoming increasingly important in providing people with appropriate content, enhancing their online experience. In this paper, we propose a recommender system using advanced deep reinforcement learning(DRL) techniques. This method is more adaptive and integrative than traditional methods. We selected the MovieLens dataset and employed the precision metric to assess the effectiveness of our algorithm. The result of our implementation outperforms other baseline techniques, delivering better results for Top-N item recommendations.

Kakao Deep Reading Index: Consumption Time as a Key Factor in News Curation Algorithm

  • Lee, Dongkwon;Kim, Daewon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4833-4848
    • /
    • 2019
  • This paper introduces the structure and effects of Kakao's news curation algorithm, which is created based on the Deep Reading Index (DRI). The DRI examines the extent of deep reading through content reading time, that is, the duration of reader engagement with an article. Current news curation algorithms focus on reader choice, with the click-through rate or pageviews as the gauge for consumption frequency. DRI is a product of the challenge of introducing and adopting a new factor called 'consumption time' instead of 'frequency of consumption', which is the basis of existing curation algorithms. The analysis of DRI-based services proves that the new algorithm can act as a curation system that is more effective in providing in-depth and quality news reports.

Automatic Recommendation of Nearby Tourist Attractions related to Events (이벤트와 관련된 주변 관광지 자동 추천 알고리즘 개발)

  • Ahn, Jinhyun;Im, Dong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.407-413
    • /
    • 2020
  • Participating in exhibitions is one of the major activities for tourists. When selecting their next travel destination after participating in an event, they use map services and social network services, such as blogs, to obtain information about tourist attractions. The map services are location-based recommendations, because they can easily retrieve information regarding nearby places. Blogs contain informative content about tourist attractions, thereby providing content-based recommendations. However, few services consider both location and content. In location-based recommendations, tourist attractions that are not related to the content of the event attended might be recommended. Content-based recommendation has a disadvantage in that events located at a distance might get recommended. We propose an algorithm that considers both location and content, based on information from the Korea Tourism Organization's Linked Open Data (LOD), Wikipedia, and a Korean dictionary. By extracting nouns from the description of a tourist attraction and then comparing them with nouns about other attractions, a content-based relationship is determined. The distance to the event is calculated based on the latitude and longitude of each tourist attraction. A weight selected by the user is used for linear combination with the content-based relationship to determine the preference order of the recommendations.

Best Practices on Educational Service Platform with AI Approach

  • Hong, Je Seong;Park, Bo Kyung;Kwak, Jeil;Kim, R. Young Chul;Son, Hyun Seung
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.40-46
    • /
    • 2019
  • The current education is becoming more extensive with the application of various teaching methods. This is a problem that is so distributed that it is difficult for users to find the data and it takes a long time to find the information they need. Currently, various educational services, materials, and instruments are developed and scattered. Therefore, it is important to raise students' awareness of aptitude and career path with customized education tailored to students. Conventional education platforms have very difficult to choose the right materials for students because of the spread of educational programs and institution materials. To solve this, we propose a customized recommendation approach to recommend customized educational service materials and institution for students to teachers, which helps teachers conveniently choose materials suitable for their respective environments. On this new platform, the CNN algorithm provides recommended content for classes and students. For real service on the educational service platform, we implement this system for Jeil edus business. Through this mechanism, we expect to improve the quality of education by helping to select the right service.

Implementation of the Unborrowed Book Recommendation System for Public Libraries: Based on Daegu D Library (공공도서관 미대출 도서 추천시스템 구현 : 대구 D도서관을 중심으로)

  • Jin, Min-Ha;Jeong, Seung-Yeon;Cho, Eun-Ji;Lee, Myoung-Hun;Kim, Keun-Wook
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.175-186
    • /
    • 2021
  • The roles and functions of domestic public libraries are diversifying, but various problems have emerged due to internally biased book lending. In addition, due to the 4th Industrial Revolution, public libraries have introduced a book recommendation system focusing on popular books, but the variety of books that users can access is limited. Therefore, in this study, the public library unborrowed book recommendation system was implemented limiting its spatial scope to Duryu Library in Daegu City to enhance the satisfaction of public library users, by using the loan records data (213,093 cases), user information (35,561 people), etc. and utilizing methods like cluster analysis, topic modeling, content-based filtering recommendation algorithm, and conducted a survey on actual users' satisfaction to present the possibility and implications of the unborrowed book recommendation system. As a result of the analysis, the majority of users responded with high satisfaction, and was able to find the satisfaction was relatively high in the class classified by specific gender, age, occupation, and usual reading. Through the results of this study, it is expected that some problems such as biased book lending and reduced operational efficiency of public libraries can be improved, and limitations of the study was also presented.

What Do The Algorithms of The Online Video Platform Recommend: Focusing on Youtube K-pop Music Video (온라인 동영상 플랫폼의 알고리듬은 어떤 연관 비디오를 추천하는가: 유튜브의 K POP 뮤직비디오를 중심으로)

  • Lee, Yeong-Ju;Lee, Chang-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.4
    • /
    • pp.1-13
    • /
    • 2020
  • In order to understand the recommendation algorithm applied to the online video platform, this study examines the relationship between the content characteristics of K-pop music videos and related videos recommended for playback on YouTube, and analyses which videos are recommended as related videos through network analysis. As a result, the more liked videos, the higher recommendation ranking and most of the videos belonging to the same channel or produced by the same agency were recommended as related videos. As a result of the network analysis of the related video, the network of K-pop music video is strongly formed, and the BTS music video is highly centralized in the network analysis of the related video. These results suggest that the network between K-pops is strong, so when you enter K-pop as a search query and watch videos, you can enjoy K-pop continuously. But when watching other genres of video, K-pop may not be recommended as a related video.

Routing optimization algorithm for logistics virtual monitoring based on VNF dynamic deployment

  • Qiao, Qiujuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1708-1734
    • /
    • 2022
  • In the development of logistics system, the breakthrough of important technologies such as technology platform for logistics information management and control is the key content of the study. Based on Javascript and JQuery, the logistics system realizes real-time monitoring, collection of historical status data, statistical analysis and display, intelligent recommendation and other functions. In order to strengthen the cooperation of warehouse storage, enhance the utilization rate of resources, and achieve the purpose of real-time and visual supervision of transportation equipment and cargo tracking, this paper studies the VNF dynamic deployment and SFC routing problem in the network load change scenario based on the logistics system. The BIP model is used to model the VNF dynamic deployment and routing problem. The optimization objective is to minimize the total cost overhead generated by each SFCR. Furthermore, the application of the SFC mapping algorithm in the routing topology solving problem is proposed. Based on the concept of relative cost and the idea of topology transformation, the SFC-map algorithm can efficiently complete the dynamic deployment of VNF and the routing calculation of SFC by using multi-layer graph. In the simulation platform based on the logistics system, the proposed algorithm is compared with VNF-DRA algorithm and Provision Traffic algorithm in the network receiving rate, throughput, path end-to-end delay, deployment number, running time and utilization rate. According to the test results, it is verified that the test results of the optimization algorithm in this paper are obviously improved compared with the comparison method, and it has higher practical application and promotion value.

Collaborative Tag-based Filtering for Recommender Systems (효과적인 추천 시스템을 위한 협업적 태그 기반의 여과 기법)

  • Yeon, Cheol;Ji, Ae-Ttie;Kim, Heung-Nam;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.2
    • /
    • pp.157-177
    • /
    • 2008
  • Even in a single day, an enormous amount of content including digital videos, posts, photographs, and wikis are generated on the web. It's getting more difficult to recommend to a user what he/she prefers among these contents because of the difficulty of automatically grasping of content's meanings. CF (Collaborative Filtering) is one of useful methods to recommend proper content to a user under these situations because the filtering process is only based on historical information about whether or not a target user has preferred an item before. Collaborative Tagging is the process that allows many users to annotate content with descriptive tags. Recommendation using tags can partially improve, such as the limitations of CF, the sparsity and cold-start problem. In this research, a CF method with user-created tags is proposed. Collaborative tagging is employed to grasp and filter users' preferences for items. Empirical demonstrations using real dataset from del.icio.us show that our algorithm obtains improved performance, compared with existing works.

  • PDF

A Customized Healthy Menu Recommendation Method Using Content-Based and Food Substitution Table (내용 기반 및 식품 교환 표를 이용한 맞춤형 건강식단 추천 기법)

  • Oh, Yoori;Kim, Yoonhee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.3
    • /
    • pp.161-166
    • /
    • 2017
  • In recent times, many people have problems of nutritional imbalance; lack or surplus intake of a specific nutrient despite the variety of available foods. Accordingly, the interest in health and diet issues has increased leading to the emergence of various mobile applications. However, most mobile applications only record the user's diet history and show simple statistics and usually provide only general information for healthy diet. It is necessary for users interested in healthy eating to be provided recommendation services reflecting their food interest and providing customized information. Hence, we propose a menu recommendation method which includes calculating the recommended calorie amount based on the user's physical and activity profile to assign to each food group a substitution unit. In addition, our method also analyzes the user's food preferences using food intake history. Thus it satisfies recommended intake unit for each food group by exchanging the user's preferred foods. Also, the excellence of our proposed algorithm is demonstrated through the calculation of precision, recall, health index and the harmonic average of the 3 aforementioned measures. We compare it to another method which considers user's interest and recommended substitution unit. The proposed method provides menu recommendation reflecting interest and personalized health status by which user can improve and maintain a healthy dietary habit.

Examining Factors Affecting the Binge-Watching Behaviors of OTT Services (OTT(Over-the-Top) 서비스의 몰아보기 시청행위 영향 요인 탐색)

  • Hwang, Kyung-Ho;Kim, Kyung-Ae
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.181-186
    • /
    • 2020
  • The purpose of this study is to empirically examine the factors affecting the binge-watching behaviors of OTT service users by using a multi-layer perceptron (MLP) artificial neural network. All samples (n=1,000) were collected from 'A survey on user awareness in OTT service' published by a Media Research Center of the Korea Press Foundation in 2018. Our research model includes one dependent variable which is binge-watching behaviors on OTT service and five independent variables such as gender, age, frequency of service usage, users' satisfaction with content recommendation algorithm, and content types mainly consumed. Our findings demonstrate that age, frequency of service usage, users' satisfaction with content recommendation algorithms, and certain types of contents (e.g., Korean dramas, Korean films, and foreign dramas) were found to be highly related to binge-watching behavior on OTT services.