• 제목/요약/키워드: Contaminated soil remediation

검색결과 575건 처리시간 0.025초

불포화토의 동전기정화 특성에 관한 실험적 연구 (The Characteristics of Electrokinetic Remediation for Unsaturated Soil)

  • 김병일;김익현;한상재;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.641-646
    • /
    • 2003
  • In this study, a series of electrokinetic(EK) remediation experiments are carried out under the different degree of saturation for contaminated soil with lead. for constant electrical potential, the final current of all the sample represents the similarity to steady-state value of 5∼7mA. Under conditions of all the degree of saturation the anode reservoir becomes acidic(pH as low as 3) while the cathode reservoir is basic(pH as high as 12). But pH changes in the sample is a little and decontamination efficiency is the low.

  • PDF

전자빔 조사에 의한 오염토양중의 PAHs및 PCBs의 분해 (Removal of PAHs and PCBs in artificially contaminated soils using electron beam irradiation)

  • 김석구;정장식;김이태;배우근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제7권3호
    • /
    • pp.61-70
    • /
    • 2002
  • 난분해성 유기오염물로 오염된 토양 복원을 위한 전자빔 직접조사 공정의 적용가능성을 평가하기 위하여 PAHs 와 PCBs로 오염시킨 토양에 대한 전자빔 조사실험을 수행하였다 전자빔 흡수선량 600kGy에서 PAHs의 제거율은 약 97% 이었고 PCBs는 800kGy에서 약 70%가 제거되었다. PAHs는 PCBs에 비해 낮은 흡수선량에서도 높은 제거율을 나타내었다. 오염물의 분해는 가속된 전자와 물의 반응으로 생성된 반응성 높은 중간생성물에 의한 산화/환원 반응보다는 고에너지 전자와 대상오염물의 직접적인 반응에 기인한다. 전자빔 조사에 의해 난분해성 오염물질로 오염된 토양을 효과적으로 제거할 수 있으나 이를 위해 높은 에너지를 요구하므로 비경제적인 공법이 될 수 있다. 따라서, 전자빔 직접조사 공정보다는 기존 토양복원 공법의 후처리 공정으로 개발하는 것이 경제적이고 실용화 가능할 것으로 판단된다.

Electrokinetic Remediation of Cobalt Contaminated Soil Using Ethanoic Buffer

  • Kim, Gye-Nam;Won, Hui-Jun;Oh, Won-Zin;Shim, Jun-Bo
    • Nuclear Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.1-8
    • /
    • 2002
  • After kaolin clay was artificially contaminated with Co$^{2+}$ ion, the remediation characteristics were analyzed by the electrokinetic method. Ethanoic buffer was injected in the soil column and $CH_3$COOH was continuously inputted to the cathode reservoir to restrain the pH increase. Since the pH of the cathode side of the soil column was 4.0 initially and increased to only 6.5 after remediation for 43.6 hours, precipitate, Co(OH)$_2$, was not formed in the column. The effluent rate increased with the passage of time and Co$^{2+}$ removal in the column at the initial time were mainly controlled by ion migration. 13.1% of the total amount of Co$^{2+}$ in the soil column was removed in 10 hours, 46.8% of the total Co$^{2+}$ in 20.8 hours, 71.7% of the total Co$^{2+}$ in 30.1 hours, and 94.6% of the total Co$^{2+}$ in 43.6 hours. Meanwhile, residual concentrations in the column calculated by the developed model were similar to those by experiment. experiment.

폐 광산 지역 중금속 오염 토양의 석회안정화 적용 시 용출특성 (A Leaching Characteristics on Lime Stabilization of Heavy Metal Contaminated Soil in a Waste Mine Area)

  • 어성욱
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.862-867
    • /
    • 2011
  • Pozzolanic-based stabilization/solidification (S/S) is an effective and economic remediation technology to immobilize heavy metals in contaminated soils. In this study, quick lime (CaO) was used to immobilize cadmium and zinc present in waste mine contaminated clayey sand soils. Addition of 5% quicklime to the contaminated soils effectively reduced heavy metal leachability after 2 bed volume operation below the drinking water regulatory limits. Lime addition was revealed to increase the immobilization for all heavy metals in tested pH ranges, so it could be an optimal choice for short-term remediation of heavy metal contaminated soil. The mass balances for these column tests show metal reduction of 92% for Cd and 87% for Zn of total resolved mass in case of 5% lime application.

유기산 추출에 의한 철 폐광산 오염토양의 복원 (Ex-situ Remediation of a Contaminated Soil of Fe Abandoned Mine using Organic Acid Extractants)

  • 정의덕;강신원;백우현
    • 한국환경과학회지
    • /
    • 제9권1호
    • /
    • pp.43-47
    • /
    • 2000
  • A study on the remediation of heavily for ion contaminated soils from abandoned iron mine was carried out, using ex-situ extraction process. Also, oxalic acid as a complex agent was evaluated as a function of concentration, reaction time and mixing ratio of washing agent in order to evaluate Fe removability of the soil contaminated from the abandoned iron mine. Oxalic acid showed a better extraction performance than 0.1N-HCl, i.e., the concentrations of Fe ion extracted from the abandoned mine for the former at uncontrolled pH and the latter were 1,750 ppm and 1,079 ppm, respectively. The optimum washing condition of oxalic acid was in the ratio of 1:5 and 1:10 between soil and acid solution during l hr reaction. The total concentrations of Fe ion by oxalic acid and EDTA at three repeated extraction, were 4,554 ppm and 864 ppm, respectively. The recovery of Fe ions from washing solution was achieved, forming hydroxide precipitation and metal sulfide under excess of calcium hydroxide and sodium sulfide. In addition, the amounted of sodium sulfide and calcium hydroxide for the optimal revovery of Fe were 15g/$\ell$ and 5g/$\ell$ from the oxalic acid complexes, respectively.

  • PDF

Contaminated Land: A Site Auditor's Perspective\ulcorner

  • ;신원식
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.63-66
    • /
    • 2002
  • Developers have, for some time now, recognised the benefits of acquiring "brownfields" sites for future urban development. The term “brownfield” generally refers to sites that have been previously occupied and in most cases this occupation has been for industrial usage. A key issue that developers face when considering the acquisition of a former industrial site is contamination and the costs associated with remediating the land to a level that renders the site suitable for its proposed use. Understanding all of the issues and implications associated with the remediation of contaminated land can be quite daunting. The process of remediation brings together a number of stakeholders that all have some influence on the outcome of the works. The stakeholders include the vendor, the purchaser, the regulatory authorities i.e. EPA and council, the Site Auditor and local residents. Careful planning and negotiation with the above stakeholders should be considered before committing to any remediation project.n project.

  • PDF

Microcosm Experiment for Evaluating Efficiency of Chemical Amendments on Remediation of Heavy Metal Contaminated Soil

  • Hong, Young Kyu;Oh, Se Jin;Oh, Seung Min;Yang, Jae E.;Ji, Won Hyun;Kim, Sung Chul
    • 한국토양비료학회지
    • /
    • 제48권2호
    • /
    • pp.138-145
    • /
    • 2015
  • Heavy metal pollution in agricultural field near the abandoned metal mines is a critical problem in Korea. General remediation technique is to apply chemical amendments and soil covering. However, there is no specific guidelines for conducting soil covering. Therefore, main objective of this research was to determine optimum soil covering technique with microcosm experiment. Three different chemical amendments, lime stone (LS), steel slag (SS), and acid mine drainage sludge (AMDS), were examined and varied soil covering depth, 20, 30, 40cm, was applied to determine optimum remediation technique. Bioavailable heavy metal concentration in soil and total concentration of heavy metals in crop were monitored. Result showed that average heavy metal concentration in varied soil covering depth was ordered as 40 cm ($14.5mg\;kg^{-1}$) < 20 cm ($14.6mg\;kg^{-1}$) < 30 cm ($16.0mg\;kg^{-1}$) and also heavy metal concentration in crop was ordered as 40 cm ($100{\mu}g\;kg^{-1}$) < 30 cm ($183{\mu}g\;kg^{-1}$) < 20 cm ($190{\mu}g\;kg^{-1}$). In terms of chemical amendments, average heavy metal concentration was decreased as AMDS ($150{\mu}g\;kg^{-1}$) < SS ($151{\mu}g\;kg^{-1}$) < LS ($154{\mu}g\;kg^{-1}$). Overall, depth of soil covering should be over 30 cm to minimize bioaccumulation of heavy metals and SS and LS could be applied in heavy metal contaminated soil for remediation purposes.

중금속 오염 토양의 고도 선별 정화(복원)기술 (Advanced separation techniques for treatment of soil contaminated with heavy metals)

  • 이효숙;채영배
    • 기술사
    • /
    • 제41권3호
    • /
    • pp.24-29
    • /
    • 2008
  • Recently, the serious problems have been occurred due to the contaminated sites with heavy metals are increasing. There are several remediation technologies of the metal contaminated soil such as physical separation, washing with water or acid, biologically, electrically. Pytoremediation, ultrasonic etc. Among these technologies the physical separation can be put in a good option to solve the metal contaminated soil economically and environmental friendly. Because this technology has been already commercially certificated in the mineral processing field for a long time.

  • PDF

MOM-Bentonite 투수성반응벽체를 이용한 PCE로 오염된 지하수의 정화 (Remediation of PCE-contaminated Groundwater Using Permeable Reactive Barrier System with M0M-Bentonite)

  • 정성래;이달희
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권4호
    • /
    • pp.73-80
    • /
    • 2012
  • The objectives of this research were to study the applicability and limitations of permeable reactive barrier (PRB) for the removal of tetrachloroethylene (PCE) from the groundwater. PRB column tests were conducted using reactive material with Moringa Oleifera Mass - Bentonite (Mom-Bentonite). Most of the PCE in the groundwater was degraded and/or captured (sorpted) in the zone containing activated material (MOM-Bentonite). The removal rate of PCE from the groundwater was 90% and 75% after 30 days and 180 days, respectively. The effect of micro-organisms on the long-term permeability and reactivity of the barrier is not well understood. MOM-Bentonite PRB system in this research has the potential to be developed into an environmentally and economically acceptable technology for the in situ remediation of PCE-contaminated groundwater.

중금속 오염 농경지 토양의 복원을 위한 토량개량법의 효과 비교 (A Comparison on the Effect of Soil Improvement Methods for the Remediation of Heavy Metal contaminated Farm Land Soil near Abandoned Mines)

  • 유찬;윤성욱;강신일;진혜근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.984-999
    • /
    • 2010
  • A long-term field demonstration experiment of selected stabilization method to reduce the heavy metal mobility in farmland soil contaminated by heavy metals around abandoned mine site was conducted. Field demonstration experiments were established on the contaminated farmland with the wooden plate(thickness=1cm) which dimension were width=200cm, Length=200cm, height=80cm and filled with treated soil, which was mixed with lime stone and steel refining slag except on control plot. Soil samples in the plots were collected and analyzed during the experiment period(2008. 2~2008. 8) after the installation of the plots. Field demonstration experiments results showed that the application ratio of lime stone 5% was effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF