• Title/Summary/Keyword: Contaminated soil remediation

Search Result 575, Processing Time 0.028 seconds

Electrokinetic remediation of diesel-contaminated silty sand under continuous and periodic voltage application

  • Asadollahfardi, Gholamreza;Rezaee, Milad
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.456-462
    • /
    • 2019
  • Hydrocarbon contamination is among the most challenging problems in soil remediation. Electrokinetic method can be a promising method to remediate hydrocarbon-contaminated soils. Electrokinetic method consists of different transport phenomena including electro-migration, electrophoresis, and electroosmotic flow. Electroosmotic flow is the main transport phenomenon for hydrocarbon removal in soil porous media. However, the main component of hydrocarbons is the hydrophobic organic which indicates low water solubility; therefore, it makes the electroosmotic flow less effective. The objective of the present study is to enhance electrokinetic remediation of diesel-contaminated silty sand by increasing the solubility of the hydrocarbons in the soil and then increase the efficiency. For this purpose, sodium dodecyl sulfate (SDS) was used as a catholyte. In this content, SDS 0.05 M was used as catholyte and $Na_2SO_4$ 0.1 M was used as an anolyte. Low (1 V/cm) and high (2 V/cm) voltage gradients were used in periodic and continuous forms. The best removal efficiency was observed for high voltage gradient (2 V/cm) in a periodic form, which was 63.86. This result showed that a combination of periodic voltage application in addition to the employment of SDS is an effective method for hydrocarbon removal from low permeable sand.

Remediation Technology and application case of petroleum hydrocarbon contaminated soil (유류오염토양의 정화기술과 적용사례)

  • Lee, Cheol-Hyo
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.3
    • /
    • pp.35-39
    • /
    • 2008
  • The most common soil contaminants are petroleum-based. Hydrocarbons from diesel fuel and gasoline are widespread problems, as are total petroleum hydrocarbon(TPH). There are two distinct classes of soil remediation: in-situ, or on-site, and ex-situ, or off- site. On-site cleanups are often preferred because they are cheaper. On the other hand, excavating a contaminated area and transporting it to a remote site before cleaning it can often be more complete. Ex-situ remediation also has the added bonus of taking the bulk of contaminants off-site before they can spread further. In addition, in-situ situations are limited because only the topside of the soil is accessible.

  • PDF

Mechanism of Soil Remediation in Contaminated Area Using Vertical Drains (연직배수재(VDs)에 의한 오염지반정화 메커니즘 연구)

  • Lee Haeng Woo;Chang Pyoung Wuck;Kang Byung Yoon;Kim Hyun Tae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.63-71
    • /
    • 2005
  • In-situ soil remediation mechanism through the vertical drains (VDs) is analyzed with numerical model as the error and complementary error function. Results from in-situ test and analysis indicate that the contaminant concentration ratio as initial one ( C/$C_0$) increases as the radius ratio ( r/R) increases from the injection well, and also increases as the depth ratio ( z/ H) increases from the top of contaminated area. The elapse time needed to attain $50\%$ and $90\%$ clean up level ($ t_{50},\;t_{90}$) increases as the radius ratio ( r/R) and the depth ratio ( z/ H) increase. As above results, the procedure of soil flushing in contaminated area using vertical drains makes progress from the top of injection well to the bottom of extraction well.

Field Applicability Study of Landfarming for Petroleum Hydrocarbons Contaminated Soils (토양 경작법을 이용한 유류오염토양 정화사업 타당성 연구)

  • Jho, Eun Hea;Ryu, Hyerim;Shin, Doyun;Kim, Young-Jin;Choi, Yong Ju;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • The landfarming treatment for the remediation of the petroleum contaminated soil at the returned U.S. Military bases was investigated in this study. Specifically, the bioaugmentation performance using various commercially available petroleum-degrading bacteria was evaluated and the directions for enhancing the performance of the landfarming treatment were suggested. The environmental factors of the soils at the returned U.S. Military bases chosen for remediation indicate that the landfarming treatment can be used as the remediation technique; however, the addition of nitrogen or phosphorus is required. The lab-scale landfarming treatment tests using the model soil and the site soil showed that the degradation efficiency was greater with the model soil than the site soil and that the treatment performance was not affected by the number of bacteria present in the soil in the range of $10^6-10^{12}$ CFU/g. These results suggest that the successful landfarming treatment depends on the petroleum degradability of bacteria used and the environmental conditions during the treatment rather than the number of petroleum-degrading bacteria used.

Towards More Efficient Energy Use for Green Remediation (녹색정화를 위한 에너지의 효율적 이용)

  • Hwang, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.95-100
    • /
    • 2009
  • Strategies incorporating more efficient energy use into remediation of contaminated sites, which are those of important elements in green remediation, are developed and discussed in this work. Firstly, from several case studies of remedial actions in Korea, thermal desorption and/or in-situ method including pump-and-treat were found energy intensive and soil washing less intensive. In order to use energy efficiently and minimize use of fossil fuels during land revitalization process, it is necessary to optimize energy intensive systems, to use low energy remediation systems (such as bioremediation), and to integrate renewable energy sources. Furthermore, economic incentive systems such as subsidy need to be adopted if renewable energy sources are incorporated into remediation of contaminated sites.

Remediation of groundwater contaminated with hydrophobic organic compounds using biobarrier (소수성 유기오염물질로 오염된 지하수의 Biobarrier에 의한 복원)

  • 김영규;신원식;김영훈;송동의
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.114-117
    • /
    • 2002
  • Sorption and desorption studies were conducted to evaluate several media as a potential biobarrier for the remediation of groundwater contaminated with hydrophobic organic compounds (HOCs). Pahokee and Bion peats, Devonian Ohio shale, vermicompost, and 50% HDTMA-montmorillonite were used as model sorbents. Sorption and desorption isotherms were determined using the radiolabeled phenanthrene (Phe). Sorption capacity of Phe on several sorbents was in the order Ohio shale > 50% HDTMA-montmorillonite > vermicompost > Pahokee peat. Mineralization kinetics was investigated for Phe-sorbed sorbents using Pseudomonas putida 17484. Among the tested sorbents, active biodegradation of Phe was observed in shale and vermicompost: degradation in shale exhibited little lag time while that in shale showed a significant lag time. Results of this study indicate that sorbents used in this work can be utilized as permeable reactive biobarrier media for the remediation of HOC-contaminated groundwater.

  • PDF

Development of Remediation and Stabilization Technique for Low-Permeable Contaminated Soil Using Waste Materials (폐기물을 활용한 저투수성 오염토양의 정화 및 안정화 기술 개발)

  • 박상규;이기호;박준범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.681-688
    • /
    • 2002
  • Study was peformed to develop the‘environmental double pile’for the remediation of low-permeable contaminated soil. This technique is similar in function to‘sand drain pile’But this applies recyclable oyster shell treated as waste materials to a drain material and the pile is consisted of two layers. Inner metal pile is located in center and oyster shells are filled around it. By this technology, contaminated ground water is pumped out through the oyster shell and purified by drainage, adsorption, and reaction processes. Afterwards, the grout material is injected through the inner pile for the effect of the solidification / stabilization. As a result, the concept of this technique is a development of one-step process technology. Through the test, a consolidation characteristic by radial drain is going to be evaluated and the optimum standard of this technology will be calculated.

  • PDF

Bioremediation of Diesel-Contaminated Soils by Natural Attenuation, Biostimulation and Bioaugmentation Employing Rhodococcus sp. EH831 (Natural attenuation, biostimulation 및 Rhodococcus sp. EH831을 이용한 bioaugmentation에 의한 디젤 오염 토양의 정화)

  • Lee, Eun-Hee;Kang, Yeon-Sil;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.86-92
    • /
    • 2011
  • Three bioremediation methods, natural attenuation (NA), biostimulation (BS) and bioaugmentation (BA) were applied to remediate diesel-contaminated soil, with their remediation efficiencies and soil microbial activities compared both with and without surfactant (Tween 80). BA treatment employing Rhodococcus sp. EH831 was the most effective for the remediation of diesel-contaminated soil at initial remediation stage. On the addition of surfactant, no significant effect on the remediation performance was observed. A negative correlation was found between the dehydrogenase activity (DHA) and residual concentration of total petroleum hydrocarbons (TPHs) at below 20,000 mg-$TPHs{\cdot}kg$-dry $soil^{-1}$, as follows: DHA (${\mu}g$-TPF(Triphenylformazan)${\cdot}g$-dry $soil^{-1}\;d^{-1}$) = -0.02 ${\times}$ TPHs concentration (mg-$TPHs{\cdot}kg$-dry $soil^{-1}$) + 425.76 (2500 ${\leq}$ TPHs concentration ${\leq}$ 20000, p < 0.01).

Phytoremediation of Disel-Contaminated Soil by Poplar Tree

  • 조수형;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.252-254
    • /
    • 2004
  • In the past several years phytoremediation, defined as the use of plants for removing contaminants from media such as soils or water, has attracted a great deal of interest as a potentially useful remediation technology. In this study, we have attempted to asses the effectiveness of phytoremeidation of disel contaminate soils using hybrid poplar species. 3 poplar species had removed disel from soil effectively and toxic effect was also observed over 2500mg/kg disel contaminated soil, which indicating reducing disel removal.

  • PDF