• Title/Summary/Keyword: Contaminated soil remediation

Search Result 576, Processing Time 0.022 seconds

Membrane Diffusion through Flexible-Wall Permeameter for Soil Flushing Tests (연성벽체 투수기를 이용한 흙세척 실험시 벽막을 통한 확산량 산정)

  • Junboum Park;Jee-Sang Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.95-103
    • /
    • 1997
  • Solvent extraction using aqueous solutions is presumed as one of the most effective methods applicable to in situ conditions without excavation of contaminated soils. Laboratory permeameter soil flushing test is performed to describe the process of solvent extraction of contaminants absorbed on soil particles. When the permeameter tests conducted, diffusion of contaminants through the permeameter flexible-wall was considered for adjusting the remediation percentage. Input and output balance for concentration was well matched in the permeameter tests. Nitrobenzene diffused so excessively (approximately 75%) that it was not suitable for the permeameter desorption tests. No biodegradation was detected in the soil samples.

  • PDF

Environmental Remedial Investigation and plan for the soil and groundwater contaminated with petroleum (유류오염 토양/지하수 환경복원 조사${\cdot}$설계 사례)

  • Kim, Young-Woong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.57-74
    • /
    • 2001
  • The risk of the soil and groundwater that contaminated with petroleum is well known. The behaviour of petroleum in subsurface is governed by combined mechanism of several processes such as volatilization, adsorption, dissolution, biodegradation, etc. Large number of methods of remedial investigation and plan, therefore, have been developed and practiced. In application of the method, it is required engineer understands the mechanism of fate of petroleum in subsurface. So sampling procedures is very important for investigating the type of contaminants and their concentration as well as the selection of items that must be tested. For designing the remedial method, it is also required engineers to verify the structural formation of geology and the locational conditions of a land in detail, to familiar with the regulation, and to investigate the problems that can be happened after the performance was begun. In this paper it is shown that the investigation methods of contaminated land and the proper selection procedure of remedial method using the case history.

  • PDF

Separation of Heavy Metals from Metal-EDTA in Spent Soil Washing Solution by using Na2S (Na2S를 이용한 EDTA 토양세척수로부터의 중금속 분리)

  • Oh, Sanghwa;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.103-111
    • /
    • 2015
  • Soil washing with ethylenediaminetetraacetic acid (EDTA) is highly effective in the remediation of soils contaminated with heavy metals. The EDTA recycling process is a requisite for reducing the operating cost. The applicability of Na2S addition on the precipitation of heavy metals from the spent soil washing solution and thereby recycling of EDTA was investigated. Addition of Na2S into the single metal-EDTA and the mixed metal-EDTA solutions ([Na2S]/[metal-EDTA] ratio = 30, reaction time = 30 min and pH = 7~9) was highly effective in the separation of Cu and Pb from metal-EDTA complexes, but not for Ni. The Zn removal efficiency varied with pH and slightly increased upto 40% as the reaction time increased from 0 to 240 min which was longer than those for Cu and Pb. Ca(OH)2 was subsequently added to induce further precipitation of Zn and Ni and to reduce the Na2S dose. At the [Na2S]/[metal-EDTA] ratio of 10, the removal efficiencies of all heavy metals excluding Ni were above 98% with the dose of Ca(OH)2 at 0.002, 0.006 and 0.008 g into 100 mL of Cu-, Pb- and Zn-EDTA solutions, respectively. However, Ca(OH)2 addition was not effective for Ni-EDTA solution. A further research is needed to improve metal removal efficiency and subsequent EDTA recycling for the real application in field-contaminated soils.

NAPL Removal from Contaminated Soil Using Steam Injection (스팀주입에 의한 토양내 NAPL 제거 실험)

  • Lee, Sang-Il;Jang, Yeon-Su;Kim, Seon-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.459-465
    • /
    • 1997
  • The possibility of NAPL removal from contaminated soil was studied using the steam injection technique. Both single (octane, toluene and xylene) and composite NAPL (gasoline) were used as contaminant. Soils used in this study were Chumunjin fine sand and weathered granitic soil, both of which are commonly found in Korea. Experimental results showed that with 1 pore volume steam injection, the NAPL removal rate was in the range of 66∼78% for sand and 45∼73% for weathered granitic soil. The steam injection technique seems to have high potential for soil remediation with advantages of relatively short operating time and no side-effect. Rise in the background temperature led to the delay of steam condensation and the increase of NAPL mobility, which resulted in the improvement of removal efficiency. In addition, water flooding after steam injection turned out to be a very efficient way of removing NAPL residual in the soil pores.

  • PDF

Change of Bioavailability in Heavy Metal Contaminated Soil by Chemical Amendment (중금속 오염 농경지에 처리된 안정화제의 적용에 따른 토양 내 생물유효도 변화)

  • Oh, Se-Jin;Kim, Sung-Chul;Kim, Rog-Young;Ok, Yong-Sik;Yun, Hyun-Soo;Oh, Seong-Min;Lee, Jin-Soo;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.973-982
    • /
    • 2012
  • Crop safety in heavy metal contaminated agricultural field has been a critical issue in Korea and various remediation methods are proposed for minimizing heavy metal transfer from soil to crops. The main objective of this research was to evaluate remediation efficiency of two chemical amendments, lime and steel slag, and to decide extractant for assessing bioavailability of heavy metals. In order to select optimum extractant for evaluating bioavailability of heavy metals, four different single extractants, HCl, DTPA, $CaCl_2$, $NH_4NO_3$, and sequential extraction method were examined. Both chemical amendments showed high immobilization effect for Cd (66%, $33.62mg\;kg^{-1}$) and Pb (74%, $27.65mg\;kg^{-1}$) in soil by HCl extractant. In terms of heavy metal concentration in rice grains, concentrations for Cd (77%, $0.023mg\;kg^{-1}$) and Pb (82%, $0.039mg\;kg^{-1}$) decreased, with addition of chemical amendments. HCl, DTPA, and sequential extractant showed the higher correlation between heavy metal concentration in soil and crops than others. These results indicated that they could be used for assessing bioavailability of heavy metals.

Interaction Between Plants and Rhizobacteria in Phytoremediation of Heavy Metal- Contaminated Soil (중금속 오염 토양의 식물상 복원에 있어 식물과 근권세균의 상호작용)

  • Koo So-Yeon;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.83-93
    • /
    • 2006
  • In heavily industrialized areas, soil sites are contaminated with high concentrations of heavy metals. These pollutants are highly accumulated to the human body through the food web and cause serious diseases. To remove heavy metals from the soil, a potential strategy is the environmental friendly and cost effective phytoremediation. For the enhancement of remediation efficiency, the symbiotic interaction between the plant and plant growth-promoting rhizobacteria (PGPR) has been attended. In this review, the interaction of the plant and PGPR in the heavy metal-contaminated soil has been reviewed. The physicochemical and biological characteristics of the rhlzosphere can influence directly or indirectly on the biomass, activity and population structure of the rhizobacteria. The root exudates are offered to the soil microbes as useful carbon sources and growth factors, so the growth and metabolism of rhizobacteria can be promoted. PGPR have many roles to lower the level of growth-inhibiting stress ethylene within the plant, and also to provide iron and phosphorus from the soil to plant, and to produce phytohormone such as indole acetic acid. The plant with PGPR can grow better in the heavy metal contaminated soil. Therefore higher efficiency of the phytoremediation will be expected by the application of the PGPR.

Diversity of Arbuscular Mycorrhizal Fungi Associated with a Sb Accumulator Plant, Ramie (Boehmeria nivea), in an Active Sb Mining

  • Wei, Yuan;Chen, ZhiPeng;Wu, FengChang;Li, JiNing;ShangGuan, YuXian;Li, FaSheng;Zeng, Qing Ru;Hou, Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1205-1215
    • /
    • 2015
  • Arbuscular mycorrhizal fungi (AMF) have great potential for assisting heavy metal hyperaccumulators in the remediation of contaminated soils. However, little information is available about the symbiosis of AMF associated with an antimony (Sb) accumulator plant under natural conditions. Therefore, the objective of this study was to investigate the colonization and molecular diversity of AMF associated with the Sb accumulator ramie (Boehmeria nivea) growing in Sb-contaminated soils. Four Sb mine spoils and one adjacent reference area were selected from Xikuangshan in southern China. PCR-DGGE was used to analyze the AMF community composition in ramie roots. Morphological identification was also used to analyze the species in the rhizosphere soil of ramie. Results obtained showed that mycorrhizal symbiosis was established successfully even in the most heavily polluted sites. From the unpolluted site Ref to the highest polluted site T4, the spore numbers and AMF diversity increased at first and then decreased. Colonization increased consistently with the increasing Sb concentrations in the soil. A total of 14 species were identified by morphological analysis. From the total number of species, 4 (29%) belonged to Glomus, 2 (14%) belonged to Acaulospora, 2 (14%) belonged to Funneliformis, 1 (7%) belonged to Claroideoglomus, 1 (7%) belonged to Gigaspora, 1 (7%) belonged to Paraglomus, 1 (7%) belonging to Rhizophagus, 1 (7%) belonging to Sclervocystis, and 1 (7%) belonged to Scutellospora. Some AMF sequences were present even in the most polluted site. Morphological identification and phylogenetic analysis both revealed that most species were affiliated with Glomus, suggesting that Glomus was the dominant genus in this AMF community. This study demonstrated that ramie associated with AMF may have great potential for remediation of Sb-contaminated soils.

Remediation of Soils Contaminated with Arsenic and heavy Metals by Soil Washing (토양세척에 의한 비소 및 중금속 오염토양의 복원)

  • Ko Ilwon;Lee Cheol-Hyo;Lee Kwang-Pyo;Kim Kyoung-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.52-61
    • /
    • 2004
  • In order to remediate soils contaminated with oxyanionic As and cationic Zn and Ni through the pilot-scale acid washing, the effectiveness of acid washing and the properties of contaminated soils, fine soil particle and dissolved contaminants were evaluated. $H_{2}SO_4\;and\;H_{3}PO_4$ washing at pH $2{\sim}3$ enhanced the removal of As by the presence of competitive oxyanions and HCl washing effectively removed simultaneously As, Zn and Ni. The effectiveness of soil washing was little enhanced above the critical reaction time, and the carbonate, Fe/Mn oxide and organic/sulfides associated fraction were dominantly removed. The washing of coarse soil particles was highly efficient, but that of fine soil particles($<74{\mu}m$) was recalcitrant due to the enrichment with contaminants. Moreover, the physical separation of fine particles($<149{\mu}m$) enhanced the overall efficiency of soil washing. Therefore, both chemical extraction and separation of fine soil particles showed the high effectiveness of soil washing in the intersection point to minimize the amount of fine soil particles and to maximize the chemical extraction of contaminants.

An Introduction to Regulations on Underground Injection Wells: A Case in Missouri (지하 유체주입 지하수 관정의 설치 및 허가에 관한 규정: 미국 미주리주)

  • Lee Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.70-76
    • /
    • 2005
  • It is expected that use of groundwater wells for contaminated groundwater remediation, artificial groundwater recharge and geothermal heat pump systems is increasing in the future in Korea. Some practical confusions may be produced due to lack of regulations related to permits and registrations of these types of wells. This short note is intended to draw attention of relevant professionals by shortly introducing some relevant code of state regulations in Missouri, USA.

Analytical Solution for Flow Field by Arbitrarily-Located Multi Injection-Pumping Wells

  • Yoo, In-Wook;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.79-82
    • /
    • 2001
  • Analytical solutions have been derived to delineate the capture zone created by pumping wells for the remediation design of contaminated groundwater. These previous analytical solutions are often restricted to pumping wells only, specific well locations, a limited number of wells, and an isotropic aquifer. Analytical solution was developed to deal with arbitrarily located multi injection-pumping wells in an anisotropic homogeneous aquifer. The solution presented in this study provides a simple, easy method for determining tile complex flow field caused by multi injection-pumping wells at different rates, and will consequently be useful in pump-and-treat design.

  • PDF