DOI QR코드

DOI QR Code

Change of Bioavailability in Heavy Metal Contaminated Soil by Chemical Amendment

중금속 오염 농경지에 처리된 안정화제의 적용에 따른 토양 내 생물유효도 변화

  • Oh, Se-Jin (Department of Biological Environment, Kangwon National University) ;
  • Kim, Sung-Chul (Department of Bioenvironmental Chemistry, Chungnam National University) ;
  • Kim, Rog-Young (Department of Biological Environment, Kangwon National University) ;
  • Ok, Yong-Sik (Department of Biological Environment, Kangwon National University) ;
  • Yun, Hyun-Soo (Department of Biological Environment, Kangwon National University) ;
  • Oh, Seong-Min (Department of Biological Environment, Kangwon National University) ;
  • Lee, Jin-Soo (Korea Mine Reclamation Corporation (MIRECO)) ;
  • Yang, Jae E. (Department of Biological Environment, Kangwon National University)
  • 오세진 (강원대학교 바이오자원환경학과) ;
  • 김성철 (충남대학교 생물환경화학과) ;
  • 김록영 (강원대학교 바이오자원환경학과) ;
  • 옥용식 (강원대학교 바이오자원환경학과) ;
  • 윤현수 (강원대학교 바이오자원환경학과) ;
  • 오승민 (강원대학교 바이오자원환경학과) ;
  • 이진수 (한국광해관리공단) ;
  • 양재의 (강원대학교 바이오자원환경학과)
  • Received : 2012.11.30
  • Accepted : 2012.12.12
  • Published : 2012.12.31

Abstract

Crop safety in heavy metal contaminated agricultural field has been a critical issue in Korea and various remediation methods are proposed for minimizing heavy metal transfer from soil to crops. The main objective of this research was to evaluate remediation efficiency of two chemical amendments, lime and steel slag, and to decide extractant for assessing bioavailability of heavy metals. In order to select optimum extractant for evaluating bioavailability of heavy metals, four different single extractants, HCl, DTPA, $CaCl_2$, $NH_4NO_3$, and sequential extraction method were examined. Both chemical amendments showed high immobilization effect for Cd (66%, $33.62mg\;kg^{-1}$) and Pb (74%, $27.65mg\;kg^{-1}$) in soil by HCl extractant. In terms of heavy metal concentration in rice grains, concentrations for Cd (77%, $0.023mg\;kg^{-1}$) and Pb (82%, $0.039mg\;kg^{-1}$) decreased, with addition of chemical amendments. HCl, DTPA, and sequential extractant showed the higher correlation between heavy metal concentration in soil and crops than others. These results indicated that they could be used for assessing bioavailability of heavy metals.

토양에 적용된 안정화공법은 대조구에 비해 높은 수준의 안정화 효율성을 나타냈으며, 안정화 후 유효태 중금속함량의 경우 적용된 추출기법에 따라 많은 차이가 있는 것으로 평가되었다. 그렇지만, 토양의 안정화는 평가기법별로 농도의 차이는 있지만 식물 유효태를 감소시킬 수 있다는 결론을 얻었다. 농작물로의 전이량은 0.1 M HCl, 5 mM DTPA와 분획화 시험법이 높은 상관관계를 나타내었다. 하지만 토양의 특성이 고려되지 않고 단지 중금속의 농도만을 고려한 시험이었기에 향후 다양한 토양의 이화학적 인자값을 평가하여 심도 깊은 연구가 진행되어야 할 것으로 사료된다.

Keywords

References

  1. Brady, N.C. and R.R. Weil. 2003. Elements of the nature and properties of soil. Prentice Hall.
  2. Brookins, D.G. 1988. Eh-pH diagrams for geochemistry. Springer-Verlag. Berlin. 200.
  3. Chojnacka, K., A. Chojnacki, H. Gorecka, and H. Gorecki. 2005. Bioavailability of heavy metals from polluted soils to plants. Sci. Total Environ. 337:175-182. https://doi.org/10.1016/j.scitotenv.2004.06.009
  4. Dermatas, D. and Meng, X. 2003. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engine. Geol.. 70: 377-394. https://doi.org/10.1016/S0013-7952(03)00105-4
  5. Feng, M.H., Z.Q. Shan, S.Z. Zhang, and B. Wen. 2005a. Comparison of a rhizozphere-base method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere. 59:939-949. https://doi.org/10.1016/j.chemosphere.2004.11.056
  6. Feng, M.H., Z.Q. Shan, S. Zhang, and B. Wen. 2005b. A comparison of the rhizozphere-base method with DTPA, EDTA, CaCl2, and $NaNO_{3}$ extraction methods for prediction of bioavailability of metals in soil to barley. Environ. Pollut. 137:231-240. https://doi.org/10.1016/j.envpol.2005.02.003
  7. Gleyzes, C., S. Tellier, and M. Astruc. 2002. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. TrAC. 21(6,7):451-467.
  8. Jung, G.B., W.I. Kim, K.H. Moon, and I.S. Ryu. 2000. Comparisons of simple extraction methods and availability for heavy metals in paddy comparisons of simple extraction methods and availability for heavy metals in paddy. Korea J. Environ. Agric. 19(4):314-318.
  9. Jung, G.B,, W.I. Kim, J.S. Lee, J.D. Shin, J.H. Kim, and S.G. Yun. 2005. Availability of heavy metals in soils with different characteristics and controversial points for analytical methods of soil contamination in Korea. Korea J. Environ. Agric. 24(2):106-116. https://doi.org/10.5338/KJEA.2005.24.2.106
  10. Jung, G.B., W.I. Kim, J.S. Lee, J.D. Shin, J.H. Kim, and J.T. Lee. 2006. Availability of heavy metals in soil and their translocation to water dropwort (Oenanthe javanica DC.) cultivated near industrial complex. Korea J. Environ. Agric. 25(4):323-330. https://doi.org/10.5338/KJEA.2006.25.4.323
  11. Jurate, K., L. Anders, and M. Christian. 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments. Waste Manag. 28:215-225. https://doi.org/10.1016/j.wasman.2006.12.012
  12. Kang, M.J. 2007. Bioavailability of arsenic and cadmium to crops in the mining-affected soils. Kangwon National University.
  13. Kim, K.R., G. Owens, R. Naidu, and K.H. Kim. 2007. Assessment techniques of heavy metal bioavailability in soil. Korean J. Soil Sci. Fert.. 40(4):311-325.
  14. Kim, K.R., G. Owens, and R. Naidu. 2009. Heavy metal distribution, bioaccessibility and phytoavailability in long-term contaminated soils from lake Macquarie, Australia. Aust. J. Soil Research. 47:166-176. https://doi.org/10.1071/SR08054
  15. Kim, K.R., J.S. Park, M.S. Kim, N.I. Koo, S.H. Lee, J.S. Lee, S.C. Kim, J.E. Yang, and J.G. Kim. 2010a. Changes in heavy metal phytoavailability by application of immobilizing agents and soil cover in the upland soil nearby abandoned mining area and subsequent metal uptake by red pepper. Korean J. Soil Sci. Fert. 43(6):864-871.
  16. Kim, R.Y., J.K. Sung, J.Y. Lee, Y.J. Lee, S.J. Jung, J.S. Lee, and B.C. Jang. 2010b. Accumulation, mobility, and availability of copper and zinc in plastic film house soils using speciation analysis. Korean J. Soil Sci. Fert. 43(6):937-944.
  17. Kim, W.I., J.J. Kim, J.H. Yoo, J.Y. Kim, J.H. Lee, M.K. Paik, R.Y. Kim, and G.J. Im. 2010c. Arsenic fractionation and bioavailability in paddy soils near closed mines in Korea. Korean J. Soil Sci. Fert.. 43(6):917-922.
  18. Krishnamurti, G.S.R., P.M. Huang, K.C.J.V. Rees, L.M. Kozak, and H.P.W. Rostad. 1995. A new soil test method for the determination of plant-available cadmium in soil. Commun. Soil Sci. Plant Anal. 26(17, 18):2857-2867. https://doi.org/10.1080/00103629509369493
  19. Krishnamurti, G.S.R. and R. Naidu. 2000. Speciation and phytoavailability of cadmium in selected surface soils of South Australia. Aust. J. Soil Research. 38:991-1004. https://doi.org/10.1071/SR99129
  20. Lee, M.H., B.J. Kim, Y.S. Park, and Y.H. Bin. 1981. Studies on the method of cadmium analysis in paddy soils. Korean J. Soil Sci. Fert. 14(4):230-235.
  21. Lee, H.K., H.S. Jin, I.S. Hwang, and J.Y. Park. 2002. Prediction of leaching behavior of steel slag using a chemical equilibrium model. J. Waste Manag. 19:79-87.
  22. Lee, J.H., J.Y. Kim, W.R. Go, E.J. Jeong, K. Anitha, G.B. Jung, D.H. Kim, and W.I. Kim. 2012. Current research trends for heavy metals of agricultural soils and crop uptake in Korea. Korea J. Environ. Agric. 31(1):75-95. https://doi.org/10.5338/KJEA.2012.31.1.75
  23. Meers, E., A. Ruttens, M.J. Hopgood, D. Samson, and F.M.G. Tack. 2005. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere. 58:1011-1022. https://doi.org/10.1016/j.chemosphere.2004.09.047
  24. ME (Ministry of Environment). 2002. The Korean standard method of environmental pollutions for soil pollution. Ministry of Environment, Korea.
  25. ME (Ministry of Environment). 2009. The Korean standard method of environmental pollutions for soil pollution. Ministry of Environment, Korea.
  26. Oh, S.J., S.C. Kim, T.H. Kim, K.H. Yeon, J.S. Lee, and J.E. Yang. 2011a. Determining kinetic parameters and stabilization efficiency of heavy metals with various chemical amendment. Korean J. Soil Sci. Fert.. 44(6):1063-1070. https://doi.org/10.7745/KJSSF.2011.44.6.1063
  27. Oh, S.J., S.C. Kim, H.S. Yoon, H.N. Kim, T.H. Kim, K.H. Yeon, J.S. Lee, S.J. Hong, and J.E. Yang. 2011b. Evaluating heavy metal stabilization efficiency of chemical amendment in agricultural field; field experiment. Korean J. Soil Sci. Fert.. 44(6):1052-1062. https://doi.org/10.7745/KJSSF.2011.44.6.1052
  28. Ok, Y.S., R.A. Usman, S.S. Lee, A.M. Azeem, B.S. Choi, Y. Hashimoto, and J.E. Yang. 2011. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere. 85:677-682. https://doi.org/10.1016/j.chemosphere.2011.06.073
  29. Paik, K.H., D.H. Kim, and S.H. Choi. 1997. Effect of light metal ions and competition among heavy metal ions during the adsorption of heavy metal ions by bark. Korea J. Environ. Agric. 16(2):115-118.
  30. Park, S.W., J.S. Yang, S.W. Ryu, D.Y. Kim, J.D. Shin, W.I. Kim, J.H. Choi, S.L. Kim, and F.S. Andrew. 2009. Uptake and translocation of heavy metals to rice plant on paddy soils in "Top-Rice" cultivation areas. Korea J. Environ. Agric. 28(2):131-138. https://doi.org/10.5338/KJEA.2009.28.2.131
  31. Pickering, W.F. 1982. Extraction of copper, lead, zinc or cadmium ions sorbed on calcium carbonate. Water, Air and Soil Pollution. 20:299-309.
  32. RDA. 2000. Analyses of soil and plant. NIAST.
  33. Rob, N., J. Comans, and J. Middelburg. 1987. Sorption of trace metals on calcite: Applicability of the surface precipitation model. Geochtmlcon Cosmochrmrca Acfa. 51:2587-2591.
  34. Son, J. H., Roh, H., Lee, S. Y., Kim, S. K., Kim, G. H., Park, J. K., Yang, J. K., and Chang, Y. Y. 2009. Stabilization of heavy metal contaminated paddy soils near abandoned mine with steel slag and CaO. Kossge. 14(6):78-86.
  35. Tessier, A., P.G.C. Cambpbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analy. Chem. 51:844-851. https://doi.org/10.1021/ac50043a017
  36. US EPA. 2007. The Use of soil amendments for remedation, revitalization, and reuse. EPA. 5203.
  37. Weng, L., E.J.M. Temminghoff, S. Lofts, E. Tipping, and W.H.V. Riemsdijk. 2002. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol. 36(22):4804-4810. https://doi.org/10.1021/es0200084
  38. Yang, J.E., K.W. Lee, J.J. Kim, and H.S. Lim. 1995. Changes of chemical species in soil solution induced by heavy metals. Korea J. Environ. Agric.. 14(3):263-271.
  39. Yang, J.E., J.G. Skousen, Y.S. Ok, K.R. Yoo, and H.J. Kim. 2006. Reclamation of abandoned coal mine wastes using lime cake by-products in Korea. Mine Water Environ. 25:227-232. https://doi.org/10.1007/s10230-006-0137-z

Cited by

  1. The Fate of As and Heavy Metals in the Flooded Paddy Soil Stabilized by Limestone and Steelmaking Slag vol.20, pp.1, 2015, https://doi.org/10.7857/JSGE.2015.20.1.007
  2. Effect of chemical amendments on remediation of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields vol.39, pp.2, 2017, https://doi.org/10.1007/s10653-017-9921-x
  3. Assessment on the Transition of Arsenic and Heavy Metal from Soil to Plant according to Stabilization Process using Limestone and Steelmaking Slag vol.18, pp.7, 2013, https://doi.org/10.7857/JSGE.2013.18.7.063
  4. Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.627
  5. Application of Enzymatic Activity and Arsenic Respiratory Gene Quantification to Evaluate the Ecological Functional State of Stabilized Soils Nearby Closed Mines vol.39, pp.5, 2017, https://doi.org/10.4491/KSEE.2017.39.5.265
  6. Effects of a Chelate (DTPA) on Cucumber Growth and Soil Chemical Properties in Nutrient-accumulated Soil of Polytunnel Greenhouse vol.46, pp.6, 2013, https://doi.org/10.7745/KJSSF.2013.46.6.665
  7. Comparing Bioavailability of Cadmium and Arsenic in Agricultural Soil Under Varied pH Condition vol.48, pp.1, 2015, https://doi.org/10.7745/KJSSF.2015.48.1.057
  8. Evaluating Efficiency of Coal Combustion Products (CCPs) and Polyacrylamide (PAM) for Mine Hazard Prevention and Revegetation in Coal Mine Area vol.47, pp.6, 2014, https://doi.org/10.7745/KJSSF.2014.47.6.525
  9. Effects of Industrial By-products on Reducing Heavy Metal Leaching in Contaminated Paddy Soil vol.48, pp.1, 2015, https://doi.org/10.7745/KJSSF.2015.48.1.064
  10. Comparison of Bioavailability and Biological Transfer Factor of Arsenic in Agricultural Soils with Different Crops vol.47, pp.6, 2014, https://doi.org/10.7745/KJSSF.2014.47.6.518
  11. Efficiency of Chemical Amendments for Reducing Ecotoxicity in Heavy Metal Polluted Agricultural Fields vol.49, pp.1, 2016, https://doi.org/10.7745/KJSSF.2016.49.1.075