• Title/Summary/Keyword: Contaminated sediment

Search Result 219, Processing Time 0.022 seconds

Application of Response Surface Methodology for optimize the Biostimulant ball and stabilize Heavy metals pollutants in contaminated coastal sediments

  • Song, Young-chae;Subha, Bakthacachallam;Woo, Jung Hui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.179-180
    • /
    • 2015
  • The variety of organic and inorganic pollutants are introduced to coastal sediment and making highly contaminated due to rapid development of industralization and economic development. Numerous contaminants are release into marine sediment and it significantly affect marine aquatic environment. In the present study stated the optimize the biostimulant ball (BSB) in coastal sedimentand stabilse the heavy metals present in the sediment. The effective variables like BSB size, distance and month variables on Cu stabilization was determined by using Response surface methodology(RSM). The analysis of variance (ANOVA) and coefficient determination (R2) of Cu reduction 0.9610 and maximum stabilisation was obtained in 3cm ball size and 5.5cm distance and 4 month interval time. This result revealed that the BSB in effective for Cu reduction in coastal sediment.

  • PDF

호소 및 하천의 오염 저질토 sampling 방법 및 처리방안 연구

  • 최동호;배우근;최형주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.115-119
    • /
    • 2003
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water body can accumulate in sediment at much higher levels, the purpose of this study was to make convenient sampling method and optimal treatment of sediment for water quality improvement in reservoir or stream based on an evaluation of degree of contamination. Results for analysis of S-reservoir sediments were observed that copper concentration of almost areas were higher than the regulation of soil pollution (50 mg/1) for the riverbed. S-stream sediments were observed that copper, arsenic and TPH concentration of almost areas were exceeded soil pollution concerning levels for factorial areas. We used Remscreen(version. 1.0) program which is contaminated soil recovery program to select optimal treatment method of contaminant sediments. The result was shown in the order of Thermal Calcination > Excavation, Retrieval and Off-site Disposal(comparative less then contaminant) > Low Temperature Thermal Desorption + Solidification/Stabilization.

  • PDF

Employing Response Surface Methodology for optimization of slow release Biostimulant ball in contaminated coastal sediments in Busan, South Korea

  • Song, Young-Chae;Subha, Bakthacachallam;Woo, Jung Hui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.87-88
    • /
    • 2014
  • The Coastal sediment is highly contaminated due to ship transportation, industries discharges and urban sources. Various contaminants release into seawater and settle in marine sediment and it significantly affect marine eco system. In the present study evaluated the optimization of slow release biostimulant ball (BSB) in coastal sediment in busan. The effective variables like BSB size, distance and month variables on VS reduction was determined by using Response surface methodology(RSM). The analysis of variance (ANOVA) and coefficient determination (R2) of VS was 0.9369 and maximum reduction of VS was obtained in 3cm ball size and 5.5cm distance and 4 month interval time. This result revealed that the BSB in effective VS reduction in coastal sediment.

  • PDF

Enhancing the Intrinsic Bioremediation of PAH-Contaminated Anoxic Estuarine Sediments with Biostimulating Agents

  • Bach Quang-Dung;Kim Sang-Jin;Choi Sung-Chan;Oh Young-Sook
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.319-324
    • /
    • 2005
  • Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 ${\mu}g/kg$ dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo [a] pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 ${\mu}g$ PAH/ kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.

Remediation of Heavy Metal Contaminated Sediments (중금속 오염 퇴적저니의 복원방안)

  • 배우근;이창수;홍종철;장석규;김성진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.34-38
    • /
    • 1999
  • This paper investigated remediation options for contaminated sediments with heavy metals. Twenty three sediment samples were taken from three different depths of 0.5m, 1.5m and 2.5m. The concentration of Heavy metals Cu, Pb, and Hg were measured. The concentration of copper far exceeded the Sediment Quality Guideline in U.S.A and Interim Sediment Quality Guidelines in Canada. Therefore, remediation of the sediments is requried to protect the benthos. Two remediation options were suggested : dredging of the organic sediments as deep as about 85cm followed by surface covers with clean soil, and in-situ stabilization of tile sediments using lime or cement followed by surface cover with clean soil.

  • PDF

Changes in Benthic Environments in Polluted Coastal Sediment Using Granulated Coal Ash as a Cover (석탄회 조립물의 피복에 따른 연안 오염퇴적물의 저서환경 변화)

  • Jeong, Ilwon;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.67-73
    • /
    • 2019
  • We carried out basic research to evaluate covering material for improving and managing contaminated benthic environments in coastal areas. Changes in nutrient concentration such as phosphate, hydrogen sulfide of contaminated sediment, and pH, Oxidation Reduction Potential (ORP) were investigated through mesocosm experiments for 6 months by covering contaminated sediment with granulated coal ash. Calcium oxide eluted from the granulated coal ash was confirmed to neutralize acidified sediment by increasing pH through hydrolysis. Also, calcium oxide and silica eluted from the granulated coal ash adsorbed and precipitated with phosphate in the sediment. The concentration of phosphate in the sediment investigated decreased by ca. 84.31 %. Similarly, the concentration of hydrogen sulfide decreased by 133.5 mg/L in one month. The hydrogen sulfide is considered to have reacted with substances such as manganese oxide which were eluted from the granulated coal ash and precipitated. Also, it was concluded that the hydrogen sulfide was reduced since anaerobic conditions in the sediment weakened. According to the results of these mesocosm experiments, granulated coal ash was found to be effective to remediate and manage benthic environments by covering the surface layer of sediment.

Application of Limestone, Zeolite, and Crushed Concrete as Capping Material for Interrupting Heavy Metal Release from Marine Sediments and Reducing Sediment Oxygen Demand (해양퇴적물에서 중금속 용출 차단 및 퇴적물 산소 요구량 감소를 위한 석회석, 제올라이트 및 폐콘크리트의 피복 소재로서 적용)

  • Kang, Ku;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.31-38
    • /
    • 2015
  • This study aims to assess the effectiveness of limestone, zeolite, and crushed concrete as capping material to block the release of heavy metals (As, Cu, Cr, Ni, and Pb) and reduce the sediment oxygen demand. The efficiency of limestone, zeolite, and crushed concrete was evaluated in a reactor in which a 1-cm thick layer of capping materials was placed on the sediments collected from Inchon north harbor. Dissolved oxygen concentration and heavy metal concentration in seawater above the uncapped sediments and capping material were monitored for 17 days. The sediment oxygen demand was in the following increasing order: crushed concrete ($288.37mg/m^2{\cdot}d$) < zeolite ($428.96mg/m^2{\cdot}d$) < limestone ($904.53mg/m^2{\cdot}d$) < uncapped ($981.34mg/m^2{\cdot}d$). The capping materials could reduce the sediment oxygen demand by blocking the release of biochemical matters consuming dissolved oxygen in seawater. It was also shown that zeolite and crushed concrete could effectively block the release of Cu, Ni, and Pb but those were not effective for the interruption of As and Cr release from marine contaminated sediments.

Boosting Power Generation by Sediment Microbial Fuel Cell in Oil-Contaminated Sediment Amended with Gasoline/Kerosene

  • Aleman-Gama, Elizabeth;Cornejo-Martell, Alan J.;Kamaraj, Sathish Kumar;Juarez, Katy;Silva-Martinez, Susana;Alvarez-Gallegos, Alberto
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.308-320
    • /
    • 2022
  • The high internal resistance (Rint) that develops across the sediment microbial fuel cells (SMFC) limits their power production (~4/10 mW m-2) that can be recovered from an initial oil-contaminated sediment (OCS). In the anolyte, Rint is related to poor biodegradation activity, quality and quantity of contaminant content in the sediment and anode material. While on the catholyte, Rint depends on the properties of the catholyte, the oxygen reduction reaction (ORR), and the cathode material. In this work, the main factors limiting the power output of the SMFC have been minimized. The power output of the SMFC was increased (47 times from its initial value, ~4 mW m-2) minimizing the SMFC Rint (28 times from its initial value, 5000 ohms), following the main modifications. Anolyte: the initial OCS was amended with several amounts of gasoline and kerosene. The best anaerobic microbial activity of indigenous populations was better adapted (without more culture media) to 3 g of kerosene. Catholyte: ORR was catalyzed in birnessite/carbon fabric (CF)-cathode at pH 2, 0.8M Na2SO4. At the class level, the main microbial groups (Gammaproteobacteria, Coriobacteriia, Actinobacteria, Alphaproteobacteria) with electroactive members were found at C-anode and were associated with the high-power densities obtained. Gasoline is more difficult to biodegrade than kerosene. However, in both cases, SMFC biodegradation activity and power output are increased when ORR is performed on birnessite/CF in 0.8 M Na2SO4 at pH 2. The work discussed here can focus on bioremediation (in heavy OCS) or energy production in future work.

Analysis the depth effect of organic pollutants and heavy metals using biostimulant ball in contaminated coastal sediments (해양오염저질의 오염물질 정화를 위한 생물활성촉진제 투여 깊이 연구)

  • Song, Young-chae;Woo, Jung-Hui;Subha, Bakthavachallam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.177-178
    • /
    • 2015
  • Sediments play a major role in determining pollution pattern in aquatic systems and reflecting the pollutant deposition. In the present study analysis the depth effect of organic pollutants and heavy metals using slow release biostimulant ball (BSB) in coastal sediment. BSB size fixed at 3cm, depth varied from 0cm to 10cm depth and 1 and 3 month interval period was carried out for the study. The organic pollutants of chemical oxygen demand, total solids and volatile solids were significantly changed at the surface sediment (0cm)in 1 month and 3 month interval time using BSB. In contrast, sediment depth increase upto 10cm the reduction percentage decrease like to control. Vertical distribution of heavy metals are not consistent from the surface layer toward the bottom layers. Heavy metals fractions were significantly changes, the exchangeable fraction was reduced and other organic and residual fractions were stabilized percentage are increased. This finding concluded BSB is effective for reduce organic pollutants, heavy metals stabilization from the contaminated sediment.

  • PDF

Development and Characterization of PCE-to-Ethene Dechlorinating Microcosms with Contaminated River Sediment

  • Lee, Jaejin;Lee, Tae Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.120-129
    • /
    • 2016
  • An industrial complex in Wonju, contaminated with trichloroethene (TCE), was one of the most problematic sites in Korea. Despite repeated remedial trials for decades, chlorinated ethenes remained as sources of down-gradient groundwater contamination. Recent efforts were being made to remove the contaminants of the area, but knowledge of the indigenous microbial communities and their dechlorination abilities were unknown. Thus, the objectives of the present study were (i) to evaluate the dechlorination abilities of indigenous microbes at the contaminated site, (ii) to characterize which microbes and reductive dehalogenase genes were responsible for the dechlorination reactions, and (iii) to develop a PCE-to-ethene dechlorinating microbial consortium. An enrichment culture that dechlorinates PCE to ethene was obtained from Wonju stream, nearby a trichloroethene (TCE)-contaminated industrial complex. The community profiling revealed that known organohalide-respiring microbes, such as Geobacter, Desulfuromonas, and Dehalococcoides grew during the incubation with chlorinated ethenes. Although Chloroflexi populations (i.e., Longilinea and Bellilinea) were the most enriched in the sediment microcosms, those were not found in the transfer cultures. Based upon the results from pyrosequencing of 16S rRNA gene amplicons and qPCR using TaqMan chemistry, close relatives of Dehalococcoides mccartyi strains FL2 and GT seemed to be dominant and responsible for the complete detoxification of chlorinated ethenes in the transfer cultures. This study also demonstrated that the contaminated site harbors indigenous microbes that can convert PCE to ethene, and the developed consortium can be an important resource for future bioremediation efforts.