• Title/Summary/Keyword: Contaminated area

Search Result 688, Processing Time 0.022 seconds

The Soil and Water Pollution caused by the Weathering of Pyrophyllite Deposits: Upstream Part of Hoidong Water Reservoir in Pusan (납석광산에서 발생하는 토양 및 수질오염 실태 : 부산광역시 회동수원지 상류 지역)

  • 박맹언;김근수
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.149-156
    • /
    • 1998
  • Enoronmental problems caused by certain geologic conditions Include pollution of soil by heavy metal, acidization of souls , acid mine drainage, Pound-water pollution, and natural radioactivity, as well as zoo-logical hazards such as landslide and subsidence. The acrid mine drainage contains large amount of heavy metals nO, therefore. cause serious pollution onto the nearby drainage systems and soils. In spite of this prospective environmental danger, few studies have been done on the acid mine drainage derived from non-metallic ore deposits such as pyrophyllitefNapseok) deposits. The sudo-bearing pyrophyllite ores, alteration zones, and mine talllngs of pyrophylllte deposits produce acrid mine drainage by the okidation of weathering. Compared to the fresh host rocks, the ores and altered rocks of pyrophyllite deposits produce acidic solution which contain higher amount of heavy metals because of OeP lower buffering capacity to acrid solution. The pus of urine water and nearby stream water of pyrophyllite deposits are 2.1~3.7, which are strong- ly acidic and much lower than that (6.2~7.2) of upstream water and than that (6.8~7.6) of the stream water derived from the non-mineralized area. This study reveals that this acrid mine drainage can affect the downstream area which is 8km far from the pyrophyllite deposits, even though the drain Is diluted with abundant non-contaminated river water This suggmists that not only acid mine drainage but also the sulfide-bearing sediments originated from the pyrophyllite deposits move downstream and form acidic water through continuous oxidation reaction. The heavy metals such as Pb, Zn, Cu, Cd, Nl, Mn and Fe are enriched In the mine water of low pH, and their contents decrease as the pH of mine water Increases because of the Influx of fresh stream wainer. SoUs of the Pyrophyulte deposits are characterized by high contents of heavy metals. The stream sediments containing the yellowish brown precipitates formed by neutralization of acid mine drainage occur in all parts of the stream derived from the pyrophyllite deposits, and the sediments also contain high amounts of heavy metals. In summary, the acid mine drainage of the pyrophyllite deposits is located in the upstream part of Hoidong water reservoir in Pusan contains large amounts of heavy metals and flows into the Holdong water reservoir without any purification process. To protect the water of Holdong reservoir, the acid mine drainage should be treated with a proper purification process.

  • PDF

Bioaccumulation Patterns and Responses of Fleece-flower; Persicaria thunbergii to Cadmium and Lead

  • Kim, In Sung;Kang, Kyung Hong;Lee, Eun Ju
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.253-259
    • /
    • 2002
  • Application of phytoremediation in the polluted area to remove undesirable materials is a complex and difficult subject without detailed investigation and experimentation. We investigated the accumulation patterns of cadmium and lead in plants naturally grown, the bioavailability of plants to accumulate these toxic metals and the responses of P. thunbergii to cadmium and lead. The soil samples contained detectable lead (<$17.5_\mu$g/g), whereas cadmium was not detected in the soils of study area. The whole body of Persicaria thunbergii contained detectable lead (<320.$8_\mu$g/g/g) but cadmium was detected only in the stem (<7.$4_\mu$g/g/g) and root (<10.$4_\mu$g/g/g) of P. thunbergii. Cadmium was not detected in Trapa japonica and Nymphoides peltata, whereas lead was detected in T. japonica (<323.$7_\mu$g/g/g) and N. peltata (<177.$5_\mu$g/g/g). Correlation coefficient between lead content in soil and in these plant samples represented positive correlation. The total content of lead in each plant sample increased in the order of N. peltata$\leq$P. thunbergii

A Case Study on the Creating Artificial Planting Ground on the Waste Landfill Sites -In Case of the Bank Isolated Section Planting Layer at the Landfills of Satellite Cities of Seoul- (폐기물매립지 인공식재지반 조성 사례연구 -수도권매립지 제방이격구간 식재층을 대상으로-)

  • 조주형;이재근
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.131-139
    • /
    • 2001
  • This paper aims at surveying through case studies the planting possibility on the interval artificial ground between the bank and the core landfill of the first section of works in the SUDOKWON Landfill area landfill area which was completed, followed by the layer-on-layer landfill process involving the latch or sealing layer against emitting landfill gas from the reclaimed waste. The survey results are as follows; 1. The layers of the artificial planting ground on the landfill were established on the basis of top-on-top procedure for a waste layer, a topping soil layer (T=50cm), a gas blocking layer (broken stones T=30cm), a filter layer (non-woven fabric 700g), a sheet protecting soil layer (T=20cm), and a blocking layer (HDPE SHEET 2.0mm), an irrigation layer (SAND T=30cm), a filter layer (non-woven fabric 700g), a sheet protecting soil layer (T=20cm), and a blocking layer (HDPE SHEET 2.0mm), an irrigation layer (SAND T=30cm), a filter layer (non-woven fabric 700g), a planting layer (T=90cm+), a top mound (T=2m). 2. Since no direct damage on the planting layer affected by the landfill gas was detected, planting is found to be still possible and successful except the severely unequal subsidence portion. 3. The mortality rate is discovered different on different trees: Pinus thunbergii (H3.0$\times$W1.0m) 11.25%, Pinus thunbergii (H2.5$\times$W0.8m) 4.73%, Koelreuteira paniculata 8.67%, Hibiscus syriacus 5.68%, Deutzia parviflora 6.50%, Forsythia koreana 8.17%, Rho. yedoense v. poukhanese 32.22%, and Spiraea pru v. symplicifolia 18.89%; although the last two of which are generally considered to have a strong generic growing character, they are subject to be weakened when exposed to the contaminated microclimate of the site like landfill gas. 4. The damage rates, on Pinus thunbergii, Koelreuteria paniculata, Hibiscus syracus, Forsythia koreana, Deutzia parviflora, Rho. yedoense v. poukhanense were shown to decrease to 7.31-17.69% in the second check (June 2000) lower than 5.77-46.92% in the first examination (June 1999), whereas the damage on Spiraea pru v. symplicifolia relatively increased. It is believed that preparatory method of the air pollution, change of temperature, odor by emitting landfill gas, and minute dust from vehicles should be made, and a research on this matter will be conducted in the near future.

  • PDF

Preparation and Characterization of Porous Sintered Body Made from Coal Bottom Ash and Dredged soil (석탄(石炭) 바닥재와 준설토(浚渫土)를 이용한 다공성(多孔性) 소결체(燒結體)의 제조 및 특성 평가)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The spheric sintered body with $6{\pm}2mm$ diameter was manufactured in a rotary kiln at $1125^{\circ}C$/15 min using green body formed by pelletizing the batch powder composing of coal bottom ash produced from power plant and dredged soil by 70:30, wt%. And the physical properties of sintered body (BD) were analyzed to confirm the possibility for applying to an absorbent to restore a contaminated soil. The sintered body had a giant pore above 100 ${\mu}m$ and a fine pore below 10 ${\mu}m$, and bulk density was 1.4. Also its specific surface area, porosity and void proportion were $12.0m^2/g$, 30.1% and 38.2% respectively. The crushed body (BD-C), produced by crushing a BD specimen into an irregular shape with a aspect ratio of about 2, was similar to BD specimen at bulk density and pore size distribution. But it had superior values of specific surface area, porosity and void proportion compared with BD specimen owing to a decreased apparent volume due to conversion of closed pore existed at interior of BD to open pore during a crushing process. The IEP of sintered body occurred at about pH=5, so the optimum pH condition of reacting aqueous solution could be known before bonding a microbe to the sintered body. Hence, the optimum void proportion and porosity of an absorbent can be obtained by appropriate mixing a BD with BD-C from the base data calculated in this study.

A Study for the Establishment of Appropriate Facilities Criteria of the Korean Welfare Devices Center (한국형 복지용구사업소의 적정 시설기준 수립을 위한 기초 연구)

  • Chin, Young Ran;Bae, Joa Sup;Chung, Jae Wook;Lee, Hyo Young
    • 한국노년학
    • /
    • v.30 no.4
    • /
    • pp.1163-1177
    • /
    • 2010
  • This study was conducted to establish the appropriate facilities criteria of the Korean welfare devices center. We e-mail surveyed 194 welfare devices centers and analysed 13 blueprints of them. We established the following proper principles of facilities. First, consist type and area of room should depend on the type of welfare devices centers. Second, The flow of human and welfare devices should be simple. Third, the area calculated on the base of intent of center owner and the size of beds, wheelchairs, etc. Fourth, exhibit room facing with roadside may obtain advertising effect. Fifth, the storage and disinfecting room should use different entrance, and avoid the intersection of flow to prevent cross-contamination. Sixth, the access road to the exhibition and consulting room should be able to approach by the wheelchair. seventh, office room should be invisible to keep customer's privacy. Direct Cleaning-disinfecting type center on the premise that the maximum 165m2, middle 150m2, intermediate 140m2, display at least Consultation, Cleaning-disinfecting room, storage (clean, contaminated), the office, equipped with a parking space. Entrust Cleaning-disinfecting type center on the premise that a maximum 134m2, middle 119m2, intermediate 109m2 exhibited minimal activity room, consultation room, office, equipped with a parking space, collecting welfare when importing equipment warehouse (clean, pollution) have been proposed to equip up to.

Examination of Soil Contamination Status and Improvement Strategies within Urban Development Projects (도시개발사업 내 토양 오염 현황과 개선 방안 고찰)

  • Heo, Sujung;Lee, Dong-Kun;Kim, Eunsub;Jeon, Seong-Woo;Jin, Zhiying
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.3
    • /
    • pp.45-56
    • /
    • 2024
  • Heavy metals emitted from urban development do not decompose in the soil and remain for long periods, continually impacting the environment. Since the mid-1990s, there has been increasing societal concern in South Korea regarding soil contamination, prompting various legislative revisions to reduce pollution. This study utilizes the Environmental Impact Assessment Support System (EIASS) to investigate projects in the metropolitan area that have exceeded the Ministry of Environment's soil contamination concern levels from 1989 to 2022 and to examine improvements in the environmental impact assessment (EIA) process. The results reveal that the average concentrations of nine contaminants-cadmium (Cd), copper (Cu), arsenic (As), mercury (Hg), lead (Pb), hexavalent chromium (Cr6+), zinc (Zn), nickel (Ni), and fluoride (F)-have all increased over the years. Among these, Zn had the highest relative proportion, with 37.5% of the 40 sites exceeding environmental concern levels. Investigation of 19 specific projects at these exceedance sites showed that only 7 had documented analyses of contamination causes and remediation plans, and just one had contracted additional remediation services, though results from these efforts were found to be lacking. Furthermore, since 2019, a significant proportion of these sites were involved in residential developments, likely due to government initiatives in new city development and extensive housing supply plans. This research emphasizes the importance of public disclosure of the processes and outcomes of remediation efforts on historically contaminated soils prior to project development. It discusses improvements to the EIA by reviewing current legislation and international examples. The findings of this study are expected to heighten public awareness about heavy metal contamination and enhance transparency in soil remediation efforts, contributing to sustainable environmental management and development.

Geochemical Studies of Geothermal Waters in Yusung Geotheraml Area (유성 지역 지열수의 지구화학적 특성 연구)

  • 김건영;고용권;김천수;배대석;박맹언
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.32-46
    • /
    • 2000
  • Hydrogeochemical and isotope ($\delta$$^{18}$ O, $\delta$D, $^3$H, $\delta$$^{13}$ C, $\delta$$^{34}$ S, $^{87}$ Sr/$^{86}$ Sr) studies of various kinds of waters (thermal groundwater, deep groundwater, shallow groundwater, and surface water) from the Yusung area were carried out in order to elucidate their geochemical characteristics such as distribution and behaviour of major/minor elements, geochemical evolution, reservoir temperature, and water-rock interaction of the thermal groundwater. Thermal groundwater of the Yusung area is formed by heating at depth during deep circlulation of groundwater and is evolved into Na-HCO$_3$type water by hydrolysis of silicate minerals with calcite precipitation and mixing of shallow groundwater. High NO$_3$contents of many thermal and deep groundwater samples indicate that the thermal or deep groundwaters were mixed with contaminated shallow groundwater and/or surface water. $\delta$$^{18}$ O and $\delta$D are plotted around the global meteoric water line and there are no differences between the various types of water. Tritium contents of shallow groundwater, deep groundwater and thermal groundwater are quite different, but show that the thermal groundwater was mixed with surface water and/or shallow groundwater during uprising to surface after being heated at depths. $\delta$$^{13}$ C values of all water samples are very low (average -16.3$\textperthousand$%o). Such low $\delta$$^{13}$ C values indicate that the source of carbon is organic material and all waters from the Yusung area were affected by $CO_2$ gas originated from near surface environment. $\delta$$^{34}$ S values show mixing properties of thermal groundwater and shallow groundwater. Based on $^{87}$ Sr/$^{86}$ Sr values, Ca is thought to be originated from the dissolution of plagioclase. Reservoir temperature at depth is estimated to be 100~1$25^{\circ}C$ by calculation of equilibrium method of multiphase system. Therefore, the thermal groundwaters from the Yusung area were formed by heating at depths and evolved by water-rock interaction and mixing with shallow groundwater.

  • PDF

Water Quality Variations due to Tidal Change in the Lower Part of the Nagdong River (조석에 따른 낙동강 하류수질의 변화)

  • KIM Yong-Gwan;CHANG Dong-Suck;MOON Hong-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.109-118
    • /
    • 1985
  • This experiment was carried out to evaluate the water quality in the lower part of the Nagdong river in Korea. Three hundred and sixty water samples were collected from the 15 stations from December 1981 to November 1982 by tide(see Fig.1). Water temperature, pH, chloride ion, salinity, total coliform, fecal coliform, viable cell count and the composition of coliform were observed to evaluate the water quality. The variations of water temperature was ranged from $2.0^{\circ}C\;to\;29.5^{\circ}C$ and as mean value from $15.8^{\circ}C\;to\;18.9^{\circ}C$. The range of pH was 6.00-8.88 and 7.20-7.96 as mean value. The concentration of chloride ion from St. 1 to 5 was higher as 17.51-771 mg/l in flood tide than 13.12-264.58 mg/l in ebb tide. Specially, water quality at St.1 (Samrangjin) which located about 46 km far from Hadan was also influenced by tide. Salinities of water in flood tide were a litte higher ($11.05{\sim}31.08\%0$) than those of in ebb tide ($7.80{\sim}29.28\%0$). Total coliform MPN's ranged from 3.6/100 m/l to 460,000/100ml. The geometric mean value of the upper area (included St. $1{\sim}3$) was $259{\sim}538/100ml$, that of the middle area (included St. $4{\sim}6$) was $1,097{\sim}39,544/100ml$ for it leveled heavy contamination. Specially, in the ebb tide St. 10 was influenced by St. 6 and 7. In the upper area, the geometric mean value of fecal coliform MPN's was $109{\sim}199/100ml$ but in the area in cluded St. 5, 6 and 7 were heavily contaminated by domestic sewage, waste water from the factories area and bird's excrement. Composition of coliform was $17\%$ Escherichia coli group, $33\%$ Citrobacter freundii group, $28\%$ Enterobacter aerogenes group and $21\%$ others. Plate count of samples was varied from <30 to $3.9{\times}10^4/ml$ during the study period.

  • PDF

A Study on groundwater and pollutant recharge in urban area: use of hydrochemical data

  • Lee, Ju-Hee;Kwon, Jang-Soon;Yun, Seong-Taek;Chae, Gi-Tak;Park, Seong-Sook
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.119-120
    • /
    • 2004
  • Urban groundwater has a unique hydrologic system because of the complex surface and subsurface infrastructures such as deep foundation of many high buildings, subway systems, and sewers and public water supply systems. It generally has been considered that increased surface impermeability reduces the amount of groundwater recharge. On the other hand, leaks from sewers and public water supply systems may generate the large amounts of recharges. All of these urban facilities also may change the groundwater quality by the recharge of a myriad of contaminants. This study was performed to determine the factors controlling the recharge of deep groundwater in an urban area, based on the hydrogeochemical characteristics. The term ‘contamination’ in this study means any kind of inflow of shallow groundwater regardless of clean or contaminated. For this study, urban groundwater samples were collected from a total of 310 preexisting wells with the depth over 100 m. Random sampling method was used to select the wells for this study. Major cations together with Si, Al, Fe, Pb, Hg and Mn were analyzed by ICP-AES, and Cl, N $O_3$, N $H_4$, F, Br, S $O_4$and P $O_4$ were analyzed by IC. There are two groups of groundwater, based on hydrochemical characteristics. The first group is distributed broadly from Ca-HC $O_3$ type to Ca-C1+N $O_3$ type; the other group is the Na+K-HC $O_3$ type. The latter group is considered to represent the baseline quality of deep groundwater in the study area. Using the major ions data for the Na+K-HC $O_3$ type water, we evaluated the extent of groundwater contamination, assuming that if subtract the baseline composition from acquired data for a specific water, the remaining concentrations may indicate the degree of contamination. The remainder of each solute for each sample was simply averaged. The results showed that both Ca and HC $O_3$ represent the typical solutes which are quite enriched in urban groundwater. In particular, the P$CO_2$ values calculated using PHREEQC (version 2.8) showed a correlation with the concentrations of maior inorganic components (Na, Mg, Ca, N $O_3$, S $O_4$, etc.). The p$CO_2$ values for the first group waters widely ranged between about 10$^{-3.0}$ atm to 10$^{-1.0}$ atm and differed from those of the background water samples belonging to the Na+K-HC $O_3$ type (<10$^{-3.5}$ atm). Considering that the p$CO_2$ of soil water (near 10$^{-1.5}$ atm), this indicates that inflow of shallow water is very significant in deep groundwaters in the study area. Furthermore, the P$CO_2$ values can be used as an effective parameter to estimate the relative recharge of shallow water and thus the contamination susceptibility. The results of our present study suggest that down to considerable depth, urban groundwater in crystalline aquifer may be considerably affected by the recharge of shallow water (and pollutants) from an adjacent area. We also suggest that for such evaluation, careful examination of systematically collected hydrochemical data is requisite as an effective tool, in addition to hydrologic and hydrogeologic interpretation.ion.ion.

  • PDF

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF