• Title/Summary/Keyword: Contaminated area

Search Result 689, Processing Time 0.035 seconds

Comparison of Soil Washing for Heavy Metal Contaminated Shooting Range Using Various Extracts (다양한 추출용매를 이용한 중금속 오염 사격장 토양세척 비교)

  • Lee, Jun-Ho;Park, Kap-Song
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.123-136
    • /
    • 2010
  • In order to remediate heavy metal contaminated Nong island, Maehyang-ri shooting range soils through the batch reactor scale washing were evaluated. The experiment texture soil of N3 in the Nong island at north side incline was (g)mS containing 12.9% gravel, 47.0% sand, 35.1% silt and 5.0% clay. And the N3 soil area was contaminated with Cd($22.5\pm1.9$ ppm), Cu($35.5\pm4.0$ ppm), Pb($1,279.0\pm5.1$ ppm) and Zn($403.4\pm9.8$ ppm). The EDTA(ethylene diamine tetra acetic acid, $C_{10}H_{16}N_2O_8$) in the N3 soil was observed as most effective extractants among the 5 extractants(citric acid, EDTA, phosphoric acid, potassium phosphate and oxalic acid) tested. And chemical partitioning of heavy metals after washing N3 soil with EDTA was evaluated. Removal efficiency of residual fractions was higher than that of non-residual fractions. To choose EDTA extractant which is the most effective in soil washing technology using batch reactor process cleaning Pb and Zn contaminated sits; Pb and Zn removal rates were investigated 92.4%, 94.0% removal(1,000 mM, soil:solution=5, $20^{\circ}C$, 24 hour shaking, pH=2, 200 RPM), respectively. The results of the batch test showed that the removal efficiency curve was logarithmic in soil was removal. Thus, EDTA washing process can be applied to remediate the Pb and Zn contaminated soil used in this study.

A Study on Chemical Compositions of Sediment and Surface Water in Nakdong River for Tracing Contaminants from Mining Activities (광해오염원 추적을 위한 낙동강 지역 퇴적물 및 하천수의 화학조성 연구)

  • Kim, Jiyun;Choi, Uikyu;Baek, Seung-Han;Choi, Hye-Bin;Lee, Jeonghoon
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.211-217
    • /
    • 2016
  • There have been found mine tailings, wastes, and mining drainage scattered in the area of Nakdong River due to the improper maintenance of the abandoned mines. These contaminants can flow into rivers during the heavy rain periods in summer. Along the study area beginning Seokpo-myeon, Bonghwa-gun of Gyeongsangbuk-do untill Dosan-myeon, Andong-si, there are one hundred five mines including sixty metalliferous mines and forty-five nonmetal mines, which can adversely affect the adjacent rivers. To verify the contamination, we collected sediments, seepage water and surface water for a year both in rainy season and dry season. This study found that sediments, containing high concentrations of heavy metals caused by mining activities, are dispersed throughout the entire river basin (68 sample points with pollution index, based on the concentration of trace element, (PI) >10 among the total of 101 samples). The results of river water analysis indicated the increased concentrations of arsenic and cadmium at branches from Seungbu, Sambo, Okbang and Janggun mine, which concerns that the river water may be contaminated by mining drainage and tailing sediments. However, it is difficult to sort out the exact sources of contamination in sediments and waters only by using the chemical compositions. Thus the control of mining pollution is challenging. To prevent water from being contaminated by mining activities, we should be able to divide inflow rates from each origin of the mines. Therefore, there should be a continued study about how to trace the source of contaminants from mining activities by analyzing stable isotopes.

Visualization and contamination analysis for groundwater quality of CDEWSF in Gwangju area using statistical method (통계적 기법을 이용한 광주지역 민방위비상급수용 지하수 수질 오염도 분석 및 시각화 연구)

  • Jang, Seoeun;Lee, Daehaeng;Kim, Jongmin;Kim, Haram;Jeong, Sukkyung;Bae, Seokjin;Cho, Younggwan
    • Analytical Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.122-133
    • /
    • 2018
  • In this study, groundwater quality data measured for 11 years from 2006 to 2016 were analyzed statistically for 101 civil defense emergency water supply facilities (CDEWSF) in the Gwangju area. The contamination level was quantified into four grades by using excess drinking water quality standards, average concentration analysis, and tendency analysis results for each facility. On the basis of this approach, the groundwater contamination degree of each item was evaluated according to land use status, installation year, depth, and geological distribution. The contamination grade ratios, which were obtained by analyzing three contamination indicators (water quality exceeded frequency, average concentration analysis, and trend analysis) for 15 items on statistically significant of civil defense emergency water was relatively high, in the order of Turbidity (51.5 %) > Color (32.7 %) > Nitrate nitrogen (28.7 %) > Hardness (25.7 %). As a result of the contamination grade analysis, except for the items of Turbidity, Color, and Nitrate nitrogen, the contamination levels were distributed in various degrees from "clean (0)" to "seriously contaminated (3)." Regarding the contamination grade of 12 items, 25 % of the total were classified as "possibly contaminated (1)," and 75 % were rated "clean (0)." The four items (Turbidity, Color, Nitrate nitrogen, and Hardness) for which contamination indication rate were evaluated as "high" by the were visualized on a contamination map.

Historical Long-term Exposure to Pentachlorophenol Causing Risk of Cancer - A Community Study

  • Zheng, Rui-Zhi;Zhang, Qing-He;He, Yi-Xin;Zhang, Qian;Yang, Lin-Shen;Zhang, Zhi-Hua;Zhang, Xiu-Jun;Hu, Jing-Ting;Huang, Fen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.811-816
    • /
    • 2013
  • Background: Pervious studies suggested occupational workers exposure to pentachlorophenol (PCP) might contribute to increased risk of cancer. However, few studies have focused on associations between PCP and cancer risk at the community level. Objective: The present study was to explore the cancer risk for the community population living long-term in a PCP contaminated area. Methods: All the cancer cases diagnosed in 2009-2011 in Tongling City were collected. The cancer patients' residencies were geo-referenced in each district. The historical PCP usage for each district of Tongling was calculated as the PCP pollution index, which was further used to divide into PCP exposure categories. Standardized rate ratios (SRRs) of cancer incidence were applied to detect the cancer risk as exposure grade elevated. Correlation analysis was performed to analyze the relationship between PCP pollution and cancer incidence. Results: A total of 5,288 cancer cases (3,451 male and 1,837 female) were identified. PCP usage was correlated with the incidence of leukemia (r=0.88, P=0.002) for males, and with cancer of the esophagus for males (r=0.83, P=0.008) and females (r=0.71, P=0.020). Compared with the low exposure category, significant SRRs for total cancer sites was obtained for high PCP exposure category (SRR=1.61, 95%CI=1.59-1.62). Most SRR values of the cancer sites were significantly increased as exposure grade elevated and exposure time extended. Conclusion: The present study found that community residents living in the PCP contaminated area had increased risk of cancers. Leukemias, lymphomas and nasopharyngeal and esophageal cancers are most possibly associated with PCP exposure.

Identification and Distribution of the Pathogenic Microorganisms Isolated from Edible Ice in North Area of Daegu, Korea (대구시 북구지역의 식용얼음에서 세균 분포 및 동정)

  • Kim, Su-Jung
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.86-90
    • /
    • 2009
  • The definition of edible ice is frozen water for the use of food manufacturing, processing, or cooking, as well as for the direct eating. It has been reported that in the process of ice manufacturing and its selling, edible ice is contaminated with some microorganisms, which causes food poisoning and gastroenteritis. It was shown that besides in the edible ice, germ growth caused by various reasons occurred in the mineral water, tap water, water filtering system, and water purifier. With public awareness, in order to examine the sanitary conditions of edible ice in the Northern area of Daegu metropolitan city, 15 places were randomly selected. As a result, 14 places were found to be contaminated with microorganisms. After incubating on the Brain Heart Infusion (BHI) agar plate, 80% of Gram-negative bacilli, 17% of Gram-positive cocci, and 3% of Gram-negative cocci were cultured. Enterobacter cloacae, Chryseomonas luteola, Pantoea spp., Klebsiella pneumoniae, Acinetobacter baumannii, Acinetobacter calcoaceticus or Providencia rettgeri were detected. Gram-positive cocci cultured in BHI agar plate from 5 specimens were identified as Staphylococcus aureus or Staphylococcus xylosus, which is well known bacteria causing strong food poisoning. This present paper raises questions on the importance and awareness of sanitary conditions of edible ice and the identification of pathogenic microorganisms living in the edible ice in relation to their distribution. The examination of sanitary conditions of edible ice in other areas in Daegu seems to be also needed to find out if there are similar cases.

Derivation of Optimum Operating Conditions for Electrical Resistance Heating to Enhance the Flushing Effect of Heavy Oil Contaminated Soil (중질유 오염토양의 세정효과를 증진시키기 위한 전기저항가열의 최적 운전조건 도출)

  • Lee, Hwan;Jung, Jaeyun;Kang, Doore;Lee, Cheolhyo
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.219-229
    • /
    • 2020
  • This study evaluated the applicability of the convergence technology by deriving the optimum conditions about operating factors of electrical resistance heating to enhance the soil flushing effect on soil contaminated with bunker C oil in the coastal landfill area. As a result of the batch scale experiment, the flushing efficiency of the VG-2020 was higherthan that of the Tween-80, and the flushing efficiency increased by about 1.4 times at 60℃ compared to room temperature. As a result of the electrical resistance heating box experiment, soil temperature rose to 100℃ in about 40~80 minutes in soil with water content of 20~40%, and it was found that the heat transfer efficiency is excellent when the pipe-shaped electrode rod with STS 316 material is located in a triangular arrangement in saturated soil. In addition, it was confirmed that the interval between the electrode rods to maintain the soil temperature above 60℃ under the optimum conditions was 1.5 m, and the soil flushing box experiment accompanying electrical resistance heating showed TPH reduction efficiency of about 55% at 5 Pore Volume, and satisfied the Korean standard for the conservation of soil (less than TPH 2,000 mg/kg) at 10 Pore Volume.

Cadmium and Zinc Uptake Characteristics of Corn Plant in Arable Soil Contaminated by Smelting Factory Source

  • Hong, Chang-Oh;Gutierrez, Jessie;Oh, Ju-Hwan;Lee, Yong-Bok;Yu, Chan;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • The cadmium (Cd) and zinc (Zn) contamination of soils and cultivated crop plants by zinc smelting activities was studied. In the study area of the vicinity of ${\triangle}{\triangle}$ zinc smelting factory in Korea, soils and corn plants were sampled at corn harvesting stage and analyzed Cd and Zn concentration as well as Cd and Zn fraction and chemical properties in soils. At 600 m radius of studied area, Cd and Zn were highly accumulated in the surface soils (0 - 20 cm) showed greater than the Korean warning criteria (Cd 1.5, Zn 300 mg $kg^{-1}$) with corresponding values 1.7 and 407 mg $kg^{-1}$, respectively. The leaf part gave higher Cd concentration with the corresponding value of 9.5 mg $kg^{-1}$ as compared to the stem and grains pare (1.6 and 0.18 mg $kg^{-1}$), respectively. Higher Zn concentration was also obtained from the leaf part of the corn plant which gave the value of 1,733 mg $kg^{-1}$. The stem and grain part gave corresponding values of 547 and 61 mg $kg^{-1}$. The order of the mean Cd concentration in fractions is F3 (oxidizable fraction) > F2 (reducible fraction) > F4 (residual fraction) > F1 (exchangeable + acidic fraction). A highly positive correlation is observed between F2 and concentration of Cd and Zn in both plant pare, leaf and grain. Highly positive correlations are shown in the pH exchangeable Ca and Mg, and CEC when correlated with Cd and Zn bound to F4 fractions. To reduce Cd and Zn uptake by corn plant in an arable land heavily contaminated with Cd and Zn as affected by smelting factory, an efficient and effective soil management to increase soil pH and CEC is thus recommended.

Investigation of Contaminated Waste Disposal Site Using Electrical Resistivity Imaging Technique (폐기물 처분장 오염지반조사를 위한 전기비저항 영상화 기법의 적용)

  • Jung Yunmoon;Woo Ik;Kim Jungho;Cho Seongjun
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 1998
  • The electrical resistivity method, one of old and widely used geophysical prospecting methods, has extended its scope to civil & environmental engineering areas. The electrical resistivity imaging technique was performed at the waste disposal site located in Junju to verify the applicability to the environmental engineering area. The dipole-dipole array, with the dipole spacing of 10 m, was applied along eight survey lines. The field data were obtained under the control of automatic acquisition softwares and topographic effects were corrected during processing stage. The processed resistivity images show that very low resistivity develops inside the disposal site and the distribution of low resistivity is exactly in accord with the boundary of the site except the river side. The depth of low resistivity zones is deeper toward the river side, which is interpreted that there is a high possibility for contaminants to be scattered to the river. From resistivity images, it was feasible to deduce the depth of waste disposal as well as the horizontal/vertical distribution of the contaminated zone, which proved the applicability of the electrical resistivity imaging technique to the environmental engineering area.

  • PDF

Development of Numerical Model for Simulating Remediation Efficiency Using Surfactant in a NAPL Contaminated Area (계면활성제에 의한 NAPL 오염의 정화효율 수치 모의를 위한 모델 개발)

  • Suk, Heejun;Son, Bongho;Park, Sungmin;Jeon, Byonghun
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.206-222
    • /
    • 2019
  • Recently, various multiphase flows have been developed, and among them some models have been commercialized. However, most of them have been developed based on a pressure-based approach; therefore, various numerical difficulties were involved inherently. Accordingly, in order to overcome these numerical difficulties, a multiphase flow model, MultiPhaSe flow (MPS), following a fractional-flow based approach was developed. In this study, by combining a contaminant transport module describing an enhanced dissolution effect of a surfactant with MPS, a MultiPhaSe flow and TranSport (MPSTS) model was developed. The developed model was verified using the analytical solution of Clement. The MPSTS model can simulate the process of surfactant enhanced aquifer remediation including interphase mass transfer and contaminant transport in multiphase flow by using the coupled particle tracking method and Lagrangian-Eulerian method. In this study, a surfactant was used in a non aqueous phase liquid (NAPL) contaminated area, and the effect of hydro-geological heterogeneity in the layered media on remediation efficiency was studied using the developed model. According to the numerical simulation, when hydraulic conductivity in a lower layer is 10 times, 20 times, and 50 times larger than that in an upper layer, the concentration of dissolved diesel in the lower layer is much higher than that in the upper layer because the surfactant moves faster along the lower layer owing to preferential flow; thus, the surfactant enhances dissolution of residual non aqueous phase liquid in the lower layer.

Individual Ortho-rectification of Coast Guard Aerial Images for Oil Spill Monitoring (유출유 모니터링을 위한 해경 항공 영상의 개별정사보정)

  • Oh, Youngon;Bui, An Ngoc;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1479-1488
    • /
    • 2022
  • Accidents in which oil spills occur intermittently in the ocean due to ship collisions and sinkings. In order to prepare prompt countermeasures when such an accident occurs, it is necessary to accurately identify the current status of spilled oil. To this end, the Coast Guard patrols the target area with a fixed-wing airplane or helicopter and checks it with the naked eye or video, but it was difficult to determine the area contaminated by the spilled oil and its exact location on the map. Accordingly, this study develops a technology for direct ortho-rectification by automatically geo-referencing aerial images collected by the Coast Guard without individual ground reference points to identify the current status of spilled oil. First, meta information required for georeferencing is extracted from a visualized screen of sensor information such as video by optical character recognition (OCR). Based on the extracted information, the external orientation parameters of the image are determined. Images are individually orthorectified using the determined the external orientation parameters. The accuracy of individual orthoimages generated through this method was evaluated to be about tens of meters up to 100 m. The accuracy level was reasonably acceptable considering the inherent errors of the position and attitude sensors, the inaccuracies in the internal orientation parameters such as camera focal length, without using no ground control points. It is judged to be an appropriate level for identifying the current status of spilled oil contaminated areas in the sea. In the future, if real-time transmission of images captured during flight becomes possible, individual orthoimages can be generated in real time through the proposed individual orthorectification technology. Based on this, it can be effectively used to quickly identify the current status of spilled oil contamination and establish countermeasures.