• 제목/요약/키워드: Contaminated area

검색결과 689건 처리시간 0.023초

Mechanical Properties and Durability of Abrasion of EVA Concrete Reinforced Steel Fiber (강섬유 보강 EVA 콘크리트의 역학적 특성 및 내마모성)

  • Sung, Chan Yong;Nam, Ki Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제56권5호
    • /
    • pp.45-54
    • /
    • 2014
  • This study was performed to evaluate compressive strength, flexural strength, static modulus of elasticity, stress-strain ratio and durability of abrasion on EVA concrete reinforced steel fiber (SF) in order to use hydraulic structures, underground utilities, offshore structures and structures being applied soil contaminated area. It is used ordinary portland cement, crushed coarse aggregate, nature fine aggregate, EVA redispersible polymer powder, superplasticizer and deforming agent to find optimum mix design of EVA concrete reinforced steel fiber. EVA concrete reinforced SF was effected on the improvement of mechanical properties and durability of abrasion.

A STUDY ON THE PREDICTION OF GROUNDWATER CONTAMINATION USING GIS (지하수오염 예측을 위한 GIS 활용연구)

  • Jo, SiBeom;Shon, HoWoong
    • Journal of the Korean Geophysical Society
    • /
    • 제7권2호
    • /
    • pp.121-134
    • /
    • 2004
  • This study has tried to develop the modified DRASTIC Model by supplying the parameters, such as structural lineament density and land-use, into conventional DRASTIC model, and to predict the potential of groundwater contamination using GIS in Hwanam 2 District, Gyeonggi Province, Korea. Since the aquifers in Korea is generally through the joints of rock-mass in hydrogeological environment, lineament density affects to the behavior of groundwater and contaminated plumes directly, and land-use reflect the effect of point or non-point source of contamination indirectly. For the statistical analysis, lattice-layers of each parameter were generated, and then level of confidence was assessed by analyzing each correlation coefficient. Groundwater contamination potential map was achieved as a final result by comparing modified DRASTIC potential and the amount of pollutant load logically. The result suggest the predictability of contamination potential in a specified area in the respects of hydrogeological aspect and water quality.

  • PDF

Titanium Dioxide Nanomaterials and its Derivatives in the Remediation of Water: Past, Present and Future

  • Tiwari, Alka;Shukla, Alok;Tiwari, Diwakar;Choi, Suk Soon;Shin, Hyun-Gon;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • 제30권3호
    • /
    • pp.261-279
    • /
    • 2019
  • The aim of this review article is to summarize the role of titanium oxide ($TiO_2$) nanomaterials in the remediation of the aquatic environment contaminated with various emerging pollutants. The advanced oxidation process led by the semiconductor $TiO_2$ is an impetus in the remediation technology. Therefore, a vast number of literature works are available in this area. Further, the role of modified $TiO_2$ or thin film materials were discussed in the review. Also, the Localized Surface Plasmon Resonance (LSPR) effect of using noble metaldoped $TiO_2$ played an interesting role in the remediation process.

The Dose Effect of Stabilizing Agent on Stabilization of Heavy Metals in Soil (안정화제 주입량에 따른 중금속 오염토양의 안정화 분석)

  • Choi, Hee-Chul;Yoon, Yi-Joon;Lee, Byung-yong;Choi, Sang-il
    • Journal of Soil and Groundwater Environment
    • /
    • 제25권4호
    • /
    • pp.7-13
    • /
    • 2020
  • In this study, a stabilization method was applied to stabilize heavy metals in soils collected from a domestic contaminated area and a Canadian mine site. The stabilizing agent used in the experiment was a solidifying agent developed by KERT Co., Ltd., Korea. The agent was applied to the samples at varying weight ratios of 0, 2, 5, 7, and 10% (w/w). and the concentrations of heavy metals in the effluent were monitored at predetemined time intervals. The results indicated that the stabilization efficiency of heavy metals (Cd, Cu, Pb) increased proportionally until the agent was increased to 5%, which showed almost no leaching of heavy metals after 28 days after agent application. Therefore, addition of 5% relative to soil mass was proposed to be the optimum dose for the stabilization agent.

A Study on The Trend of Occurrence and The Use Possibility of Mass Burning of Solid Waste in Seoul (서울시 쓰레기의 배출추세와 쓰레기 소각열의 이용에 관한 연구)

  • Kim, Shin-Do
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • 제15권1호
    • /
    • pp.97-104
    • /
    • 1986
  • This is to supply the basic data for saving energy and the appropriate way of waste disposal. The amount of waste disposed and its heat after burning is guessed to get conclusions. 1. The amount of disposable waste in 1990 in Seoul area is expected to be 2.2kg per man/day, coal ashes (YONTAN) 0.7kg, non-coal ashes 1.5kg. 2. The amount of waste combustible and heat after burning will be increased, and it is useful when the waste has Less than $70\%$ of water. 3. The method to collect waste should be specially organized, because most of the waste collected In Korea Is wet. 4. As the heat emitted from mass burning is $4\times10^{12}kcal/y$ in 1985, it is considered to be in senses of energy saving and the rationnal way of waste disposal. 5. Special concern is needed because the environment contaminated will be polluted in result of burning.

  • PDF

Heavy Metals in Fine-Grained Bed Sediments of the Mangyeong River, Korea (만경강 퇴적물의 중금속 함량 및 분포)

  • Cho, Yeong-Gil
    • Journal of Environmental Science International
    • /
    • 제16권5호
    • /
    • pp.657-664
    • /
    • 2007
  • The content and distribution of some heavy metals (Fe, Mn, Cr, Co, Cu, Ni, Zn and Pb) were investigated in the <$63{\mu}m$ bed sediments of the Mangyeong river to recognize the extent of contamination. Results showed that a wide range of concentrations was apparent for every metal. These variations were particularly significant at the confluence of tributaries. High levels of metals occur mainly in the confluence of tributaries. Geoaccumulation indexes have been calculated to assess whether the concentration observed represent background or contaminated levels. It is proved that the Mangyeong River is moderately to strongly polluted for Mn, Cr, Cu, Zn and Pb. The spatial extent of pollution was examined, and it was found that the most polluted area is located in the confluence of Iksan and Jeonju tributaries.

Analysis of Specific Contaminated Status and Pollutant Loads Contribution Rate of the Tributaries in Gumho and Nam River Basin (금호강, 남강 중권역 지류·지천의 상세오염 현황 및 오염기여율 조사)

  • Na, Seungmin;Kwon, Heongak;Kim, Gyeong Hoon;Shin, Dongseok;Im, Tae Hyo
    • Journal of Wetlands Research
    • /
    • 제18권4호
    • /
    • pp.363-377
    • /
    • 2016
  • This study was investigated the pollutant load, contamination properties, pollution condition of the fine parts of tributary, the influence of Nakdong river watershed and etc. in the tributaries. The contaminated tributaries were that among the Kumho and Nam river or were too far from site of water quality monitoring stations, regularly. As a result, the water quality level was almost similar between Nam and Kumho River, except for certain parameter including TN(Total Nitrogen), Chl-a(Chlorophyll-a) and SS(Suspended Solid) in which Kumho river were 20~120%. The point discharge load(kg/day) and load density ($kg/day/km^2$) of tributaries were different the pollution level according to the flow-rate ($m^3/sec$) and stream influence area($km^2$), and the difference of these was observed highly at Nam river. Specific contamination investigation of tributaries in Nam and Kumho river watershed was conducted from two to nine points of the fine parts of tributaries depending on the confluence sites and shapes. This result observed high at the Dalseocheon and Uriyeongcheon, respectively. Beside, the pollutant load contribution rate of Nakdong watershed was high about 10% at the Dalseocheon and Uiryeongcheon. This was due to the differences of the environments about the industrial complex, metropolis residence property, agricultural cultivation, livestock pen and the downstream of non-point source.

A Study on Physiochemical Analysis and Distributions of Coliforms in Major Streams or the Mankyung River (만경강 주요 지천수의 이화학적 검사 및 대장균군의 분포에 관한 연구)

  • 황인담;기노석;정인호;최문철;이재형
    • Journal of Environmental Health Sciences
    • /
    • 제15권2호
    • /
    • pp.11-23
    • /
    • 1989
  • This study was performed to investigate present water quality and pollution characteristics of them in the basin area of the Mankyung river near Chonju urban stream. In order to obtain the pollution characteristics of this investigation, the physio-chemical water analysis as temperature, pH, DO, BOD, Cd, Cu, Pb and Zn, and coliform group and their correlation analysis were determined from March to August 1988. The main results were summarized as follows 1. Each chemical constituent detected in three streams has the following variation range as pH(6.7-7.3), DO(1.3-8.9 mg/l), BOD(1.6-162.5mg/l) and water temperature was dominated by atmospheric temperature. 2. In three streams, concentration range of heavy metal was Cd N.D.-2.8 $\mu$g/l, Cu 1.1-10.2 $\mu$g/l, Pb 2.1-13.2 $\mu$g/l and Zn 25.6-62.2 $\mu$g/l, and was shown the order of Zn, Pb, Cu and Cd. 3. In the investigation on the bacteriological pollution-in the three streams. 1) The average number of general bacteria contaminated in the Chonju urban stream was $1.7 \times 10^{5}$ numbers/ml, which was higher than $2.6 \times 10^{2}$ numbers/ml, in the Gosan stream and 1.6 $\times$ 10 numbers/ml in the Mankyung river. 2) The average number of total coliform, fecal coliform and fecal streptococcus contaminated in the Chonju urban stream which was the highest polluted site than those of the other sampling sites were respectively $2.1 \times 10^{5}$, $2.1 \times 10^{5}$ and $9.6 \times 10^{4}$ MPN/100ml. 4. Correlation coefficient between GB and TC in the Chonju stream, Gosan stream and Mankyung river was respectively 0.99, 0.96 and 0.99, Correlation coefficient between TC and FC in Chonju stream, Gosan stream and Mankyung river was respectively 0.99, 0.97 and 0.99 and correlation coefficient between FC and TC was respectively 0.99, 0.91 and 0.99. This results mean positively dose relationship between them. 5. The occupied percentage of FC of TC in the Chonju stream, Gosan stream and Mankyung river was respectively 88.1%, 68.4% and 77.9% and the percentage of Tc of TS was respectively 43.5%, 31.6% and 41.4%. These .results was considered indicative of pollution derived from domestic wastes which had been contaminated by the feces of inhabitants and domestic animals.

  • PDF

A Field Study on Remediation of Gasoline Contaminated Site by Soil Vapor Extraction (토양증기추출법에 의한 휘발유 오염토양의 현장복원 연구)

  • 김재덕;김영래;황경엽;이성철
    • Journal of Korea Soil Environment Society
    • /
    • 제5권1호
    • /
    • pp.13-23
    • /
    • 2000
  • The effects of operating condition of soil vapor extraction system and the characteristics of site on the remediation of oil contaminated soil were investigated. Thorough investigation showed that the site was contaminated with gasoline leaked from underground storage tank and the maximum concentration of BTEX and TPH were 1,081 ppm and 5,548 ppm respectively. The leaked gasoline were diffused to 6m deep and the area and volume of the polluted soil were assumed to 170$m^2$ and 1,000$\textrm{m}^3$respectively. The site were consisted of three different vertitical layers, the top reclaimed sandy soil between the earth surface and 3~4m deep, middle silty sand between 3~4m and 6m deep, and the bottom bedrock below the 6m deep. The air pemeability of soil was measured to 1.058-1.077$\times$10$^{-6}$ $\textrm{mm}^2$ by vacuum pump tests. The groundwater which level was 3~4m deep was observed in some areas of this site. The soil vapor extraction system which had 7.5 HP vacuum pump and 8 extraction wells was constructed in this site and operated at 8 hrs/day for 100 days. The BTEX was removed with above 90% efficiency where no groundwater and silty sand were observed. On the contrary, the efficiency of BTEX and TPH were dramatically decreased where groundwater and silty sand were observed. The flow rate of soil air induced by soil vapor extraction system was reduced in deeper soil.

  • PDF

The Remediation Characteristic of Soil Contaminated with Heavy Metal and Total Petroleum Hydrocarbon (TPH) by Enhanced Electrokinetic with Fenton Oxidation and Soil Flushing Method (펜톤 산화와 토양 세정이 보강된 동전기에 의한 중금속 및 총 석유 탄화수소(TPH)로 오염된 토양의 정화 특성)

  • Seo, Seok-Ju;Na, So-Jeong;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제34권3호
    • /
    • pp.885-893
    • /
    • 2014
  • This research reports the enhanced Electrokinetic (EK) with $H_2O_2$ and sodium dodecyl surfate (SDS), which are commonly used in Fenton oxidation and soil flushing method, in order to remediate soil contaminated with heavy metals and Total Petroleum Hydrocarbons (TPH) simultaneously. In addition, influences of property of soil and concentration of chemical solution were investigated through experiments of different types of soils and varying concentration of chemical reagents. The results indicated, in the experiments using artificially contaminated soil, the highest removal efficiency of heavy metals using 10% $H_2O_2$ and 20mM SDS as electrolytes. However, in the experiments using Yong-San soils (study area), remediation efficiency of heavy metals was decreased because high acid buffering capacity. Through experiment of 20% $H_2O_2$ and 40mM SDS, increased electric current influences the remediation of heavy metals due to decrease in the soil pH. In the experiments of Yong-San soils, the remediation efficiency of TPH was decreased compared with artificially spiked soils because high acid buffering capacity and organic carbon contents. Furthermore, the scavenger effect of SDS influenced TPH oxidation efficiency under the conditions of injected 40mM SDS in the soils. Therefore, the property of soil and concentration of chemical reagents cause the electroosmotic flow, soil pH, remediation efficiency of heavy metals and TPH.