• Title/Summary/Keyword: Containment building

Search Result 156, Processing Time 0.024 seconds

Seismic Safety Assessment of Containment Building (격납건물의 내진안전성 평가)

  • Lee, Seong-Lo;Bae, Yong-Gwi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.225-233
    • /
    • 2004
  • In this study, the seismic safety of containment building is assessed using response surface method. The structural analyses considering random variables such as load, resistance and analysis by ABAQUS are performed to obtain the structural response. The structural response is represented by polynomial of random variables, and the reliability analysis is performed by Level II method. Drucker-Prager failure criterion is applied as limit state function to take bi-axial stress states into account in the concrete. The lifetime probability of failure is evaluated by considering the lifetime of containment building, the annual occurrence rate of earthquake and the conditional probability of failure. Also the sensitivity analysis on the selection of sampling points is performed to obtain the steady results from response surface method.

Application of Conditional Spectra to Seismic Fragility Assessment for an NPP Containment Building based on Nonlinear Dynamic Analysis (조건부스펙트럼을 적용한 원전 격납건물의 비선형 동적 해석 기반 지진취약도평가)

  • Shin, Dong-Hyun;Park, Ji-Hun;Jeon, Seong-Ha
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.179-189
    • /
    • 2021
  • Conditional spectra (CS) are applied to the seismic fragility assessment of a nuclear power plant (NPP) containment building for comparison with a relevant conventional uniform hazard response spectrum (UHRS). Three different control frequencies are considered in developing conditional spectra. The contribution of diverse magnitudes and epicentral distances is identified from deaggregation for the UHRS at a control frequency and incorporated into the conditional spectra. A total of 30 ground motion records are selected and scaled to simulate the probability distribution of each conditional spectra, respectively. A set of lumped mass stick models for the containment building are built considering nonlinear bending and shear deformation and uncertainty in modeling parameters using the Latin hypercube sampling technique. Incremental dynamic analysis is conducted for different seismic input models in order to estimate seismic fragility functions. The seismic fragility functions and high confidence of low probability of failure (HCLPF) are calculated for different seismic input models and analyzed comparatively.

ReliabIlity analysis of containment building subjected to earthquake load using response surface method

  • Lee, Seong Lo
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 2006
  • The seismic safety of reinforced concrete containment building can be evaluated by probabilistic analysis considering randomness of earthquake, which is more rational than deterministic analysis. In the safety assessment of earthquake-resistant structures by the deterministic theory, it is not easy to consider the effects of random variables but the reliability theory and random vibration theory are useful to assess the seismic safety with considering random effects. The reliability assessment of reinforced concrete containment building subjected to earthquake load includes the structural analysis considering random variables such as load, resistance and analysis method, the definition of limit states and the reliability analysis. The reliability analysis procedure requires much time and labor and also needs to get the high confidence in results. In this study, random vibration analysis of containment building is performed with random variables as earthquake load, concrete compressive strength, modal damping ratio. The seismic responses of critical elements of structure are approximated at the most probable failure point by the response surface method. The response surface method helps to figure out the quantitative characteristics of structural response variability. And the limit state is defined as the failure surface of concrete under multi-axial stress, finally the limit state probability of failure can be obtained simply by first-order second moment method. The reliability analysis for the multiaxial strength limit state and the uniaxial strength limit state is performed and the results are compared with each other. This study concludes that the multiaxial failure criterion is a likely limit state to predict concrete failure strength under combined state of stresses and the reliability analysis results are compatible with the fact that the maximum compressive strength of concrete under biaxial compression state increases.

A Study on the Performance Assessment of PHWR Containment Building (가압중수형 원전 격납건물의 성능평가에 관한 연구)

  • Lee, Hong-Pyo;Jang, Jung-Bum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • Recently, international collaborative research which was organized at Bhabha Atomic Research Centre in India, was conducted to develop for pressure capacity and nonlinear behavior of PHWR 1/4 scale nuclear containment building between experimental test and numerical code. In this paper, a nonlinear finite element analysis was carried out in order to predict ultimate pressure capacity and nonlinear behavior of the 1/4 scale containment building. The 1/4 scale containment building is consisted of basemat, cylinder wall, dome and 4-buttress. For the finite element analysis, commercial program ABAQUS was used. Finite element models including concrete, rebar and tendon have been developed for assessment of ultimate pressure capacity and failure mode for nuclear containment building. From the analysis results, first crack of the concrete, the yielding of the rebar and ultimate capacity pressure occurred at $1.6P_d$(design pressure), $3.36P_d$ and $4.0P_d$, respectively.

Evaluation of Ultimate Pressure Capacity of Light Water Reactor Containment Considering Aging of Materials (재료의 경년상태를 고려한 경수로형 격납건물의 극한내압능력 평가)

  • Lee, Sang-Kuen;Song, Young-Chul;Han, Sang-Hoon;Kwon, Yong-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.147-154
    • /
    • 2001
  • The prestressed concrete containment is one of the most important structures in nuclear power plants, which is required to prevent release of radioactive or hazardous effluents to the environment even in the case of a severe accident. Numerical analyses are carried out by using the ABAQUS finite element program to assess the ultimate pressure capacity of the Y prestressed concrete containment with light water reactor at design criteria condition and aging condition considering varied properties of time-dependant materials respectively. From the results, it is verified that the structural capacity of the Y prestressed concrete containment building under the present, aging condition is still robust. In addition, the parameter studies for the reduction of the ultimate pressure capacity of containment building according to the degradation levels of the main structural materials are carried out. The results show that when the degradations of each materials are considered as individual and combined forms, the influence is large in the order of tendon, rebar and concrete degradation, and tendon-rebar, tendon-concrete and rebar-concrete degradation respectively.

  • PDF

PCCS Analysis Model for the Passively Cooled Steel Containment

  • Hwang, Y.D.;Chung, B.D.;Cho, B.H.;Chang, M.H.;Jeong, Ik
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.26-39
    • /
    • 1998
  • The containment pressure and temperature transient analysis computer code CONTEMPT4/MOD5 is modified to incorporate the passive containment cooling models. The correlations are selected from the existing experimental heat transfer correlations to model the natural and mixed convection in annular space between the containment shell and the shield building. The evaporative heat transfer of the water film on the outer shell of the containment is modeled using the correlations derived from the analogy between the heat and mass transfer. The modified code is applied to the Ap600 containment transient analysis for the model verification and the results are compared to the results of GOTHIC calculation done by Westinghouse. Also, d series of parametric sensitivity studies of heat transfer correlations, water film ratio and delay time of the wet cooling on the containment peak pressure and temperature following LOCA are performed for the containment of 1000MWe passive plant, KP1000.

  • PDF

Analysis on Risk Factors of Reactor Containment Building Construction using Analytic Hierarchy Process (계층 분석 방법을 이용한 원자로 격납 건물 시공의 리스크 요인 분석)

  • Shin, Dae-Woong;Shin, Yoonseok;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • Since the construction of Kori 1 was completed in 1978, the construction projects for nuclear power plant are increasingly expanded into domestic and foreign sites. However, some of construction sites of nuclear power plant have the problems of process delay and cost loss due to lack of ability of risk management. The construction of reactor containment building in nuclear power plant is especially dotted with many risk factors because it needs professional skills and large-scale resources due to long duration compared with different construction phase. Therefore, it needs the study that analyzes risk factors expected in construction of reactor containment building and suggests way of stable performance of projects. So, this study assesses risk factors of construction of reactor containment building. For the objectives, this study uses survey for group of minority specialists of 36 experts. The risks of 24 factors is classified by criterions of process, cost, safety, and quality and the results of assessment is analyzed by analytic hierarchy process. As the results, the importance and priority of risk factors classified by each criterion were calculated and the applicability of analytic hierarchy process was identified to analyze risk factors of nuclear power plant construction. These will be baseline data for risk management in construction phase of reactor containment building.

Axisymmetric Modeling of Prestressing Tendons of the Nuclear Containment Building Dome (원전 격납건물 돔의 축대칭 텐던 모델링 기법)

  • Jeon Se Jin;Chung Chul Hun;Kim Young Jin;Chung Yun Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.758-761
    • /
    • 2004
  • Prestressing tendons of the nuclear containment building dome are arranged in a non-axisymmetric manner. However, simple axisymmetric modeling of the containment building is often employed to estimate the structural behavior for, e.g. the ultimate pressure, which requires the axisymmetric approximation of the actual tendon arrangements of the dome. A procedure is proposed that can devise the actual 3-dimensional tendon stiffness and prestressing effect into the axisymmetric model. A numerical example of the CANDU type is presented to verify the procedure and to estimate the amount of approximation.

  • PDF

On the investigation of structural behaviour of nuclear containment building wall element using microscopic material model (미시적 재료모델을 사용한 원전 격납건물 벽체 요소의 구조거동 분석)

  • 이상진;이홍표;서정문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.217-221
    • /
    • 2000
  • Nonlinear stress analysis of nuclear containment building wall element is carried out using microscopic material model. The present study mainly focuses on the finite element analysis of the nuclear containment building wall element under biaxial tensile stresses and it evaluates the perfomance of adopted microscopic material model in the membrane energy dominant situation. From the numerical analysis, the adopted material model peforms well and has a good agreement with experiment result. Finally, the result of present study can be severed as a benchmark test when concrete material model is in need of evaluation.

  • PDF

Probabilistic Seismic Safety Assessment of PSC Containment Building Considering Nonlinear Material Properties (재료비선형 특성을 고려한 PSC 격납건물의 확률론적 내진안전성 평가)

  • Ahn, Seong-Moon;Choi, In-Kil;Chun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.597-604
    • /
    • 2006
  • The seismic safety of the prestressed concrete containment building was evaluated by the seismic fragility analysis based on the nonlinear dynamic time-history analyses. Four kinds of earthquake ground motions were used for the seismic fragility analysis of the containment building to consider the potential earthquake hazard. The conventional seismic fragility analysis of the safety related structures in nuclear pouter plant have been performed by using the linear elastic analysis results for the seismic design. In this study, the displacement based seismic fragility analysis method was proposed.

  • PDF