• Title/Summary/Keyword: Container size

Search Result 316, Processing Time 0.023 seconds

A simulation study of container size based on the variance of demand and interarrival time in Kanban systems (칸반시스템에서 수요와 도착간격 변동에 따른 컨테이너 크기에 관한 시뮬레이션 연구)

  • Sohn, Kwon-Ik;Ham, Sung-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.301-312
    • /
    • 1999
  • The purpose of this paper is to study the effects of container size with multi-stage and multi-item on average inventory and customer service level in Kanban systems. We use the different distributions of demand and interarrival time for each item to show that we had better to change the container size depending on different type of item for this simulation study. The small lot size can be used for container size of a single item if there is no setup time. The container size should be identical with average order size as setup time increases. The fill rate increases if the container size is large with multi-item. However, it is difficult to establish the effective container size because the effects of the container size on the order queue time are not clear. It is suitable to use the average order size as the container size for each item if the variance of demand and interarrival time of each item is relatively small. It is effective to sue the average container size if the variance of them is relatively large.

  • PDF

Models for Determining the Size of Import Container Block in Automated Container Terminals (자동화 컨테이너 터미널에서 수입 컨테이너 장치 블록 크기 결정을 위한 모형)

  • Kim, Ki-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.705-710
    • /
    • 2007
  • The productivity of automated container terminals is significantly affected by not only the speed related performances of automated transfer cranes(ATCs) but also the sizes of container blocks. In this paper, it is discussed how to determine the size of import container blocks considering both the container handling times of an ATC and their storage space. Firstly, evaluation models are suggested for the container handling times of an ATC in a typical import container blocks. Secondly, three mathematical formulations are suggested to determine the size of import container blocks. Numerical experiments for the suggested models to determine the size of import container block are provided.

Combined Effects of Container Volume and Fertilizer Level on Plant Growth, Physiological Characteristics, and Nutrient Uptake of Vinca Plant (Catharanthus roseus)

  • Kang, Jong-Goo;Chon, Sang-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.268-274
    • /
    • 2010
  • The aim of our study was to investigate the interactive effects of container size and nutrient supply on plant growth, chlorophyll synthesis, transpiration, $CO_2$ assimilation, water use efficiency (WUE), and nutrient uptake of vinca plant (Catharanthus roseus). A complete experiment utilizing four concentrations of fertilizer and three volumes of containers was conducted. As the container size was increased, the plant height, leaf area, and dry weight of vinca significantly increased regardless of fertilizer level. The leaf area and dry weight of vinca were highly sensitive to the container size. However, the chlorophyll contents of vinca 20 days after the transplant significantly increased with decreasing container sizes and increasing fertilizer concentrations. Significant differences in transpiration and $CO_2$ assimilation occurred with the use of differentfertilizer solutions, but the highest values for transpiration and $CO_2$ assimilation were in plants grown in the 15 cm-diameter containers. The highest water use efficiency was observed in the plants grown in 10 cm-containers with 4 dS/m of fertilizer, and there were no significant differences in WUE values among container sizes with fertilizer concentrations of 0, 1, or 2 dS/m. No significant difference in nutrient uptake was observed among the fertilizer levels or among the container sizes. However, at a fertilizer concentration of 4 dS/m, the uptake of several nutrients, including N, P, K, Ca, Mg, B and Fe, was higher in small containers than in larger ones.

An Experimental Study on the Safely of Portable Butane Gas Range (휴대용 부탄 가스 레인지의 안전성에 관한 실험적 연구)

  • 이근오;이장우;김종현
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.23-29
    • /
    • 2000
  • The objective of this paper is to study burst through the influence of overheating to affect a seamed container using the cookers with different materials and bottom sizes. Following result are drawn from this study; When bottom size of the roast meat had 24cm diameter, the upper part temperature of a seamed container was increased over $40^{\circ}C$. Therefore the cooker material without regard to cooker size had a great influence on the temperature of seamed container. For the natural stone plate which had bottom length 65cm, a seamed container was burst at the cooker temperature $801^{\circ}C$, the surface temperature of a burner $573^{\circ}C$. the upside temperature of seamed container $379^{\circ}C$, the downside temperature of seamed container $236^{\circ}C$ and ambient temperature $34^{\circ}C$. For the cooker of the same bottom area, the stone plate had greater influence on effect of temperature than aluminium cooker. Overheating had a great influence on the seamed container if the bottom or upside diameter of a cooker had been larger than a trivet.

  • PDF

Structural Optimization Study about Support Structure of Pressure Container (압력용기 지지구조물의 구조최적화 연구)

  • Kim, Chang-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.22-29
    • /
    • 2005
  • In this study we performed topology optimization and size optimization about support structure of pressure container which is installed in a Common Bed. The optimization study shows that structure weight optimization results can be applied to navy ship. The topology optimization is performed by static load, homogenization and optimality criteria method and size optimization is performed by SOL200 of NASTRAN.

Study on Simulation for Buffer Space Analysis of Container Crane with Dual Trolley (듀얼 트롤리형 컨테이너 크레인 버퍼공간 분석을 위한 시뮬레이션 연구)

  • Choi, Yong-Seok;Won, Seung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.33 no.5
    • /
    • pp.331-337
    • /
    • 2009
  • Container crane is main equipment in container terminals and it determines the productivity and the efficiency of container terminals. The typical type of container cranes has the single trolley and one among advanced types of them has the dual trolley. The objective of this paper is to analyze the buffer size of a container crane with the dual trolley in container terminals. We present a simulation model for analysing the buffer space of a container crane with the dual trolley. The buffer space is located between main trolley in sea-side and second trolley in yard-side. We performs various simulation experiments and analyze the buffer size to estimate the required productivity.

Model based Simulation of Container Loading/Unloading

  • Lee, Soon-Sup
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.170-175
    • /
    • 2012
  • Currently, most logistics use containers. The construction of new port and high speed medium size container ship for the transportation of merchandise have become very important. The problem of ship stability is also important because of its direct influence on the loss of human life, ships, and merchandise. The stability of a container ship during its operation is not a large problem because it is well considered in the design process. However, the assessment of ship stability during container loading/unloading in port still depends on the expertise of experienced personnel. In this paper, a model based simulation system is introduced, which is able to assess ship stability during container loading/unloading, using ENVISION, a general purpose simulation system.

Is It Possible to Achieve IMO Carbon Emission Reduction Targets at the Current Pace of Technological Progress?

  • Choi, Gun-Woo;Yun, Heesung;Hwang, Soo-Jin
    • Journal of Korea Trade
    • /
    • v.26 no.1
    • /
    • pp.113-125
    • /
    • 2022
  • Purpose - The primary purpose of this study is to verify whether the target set out by the International Maritime Organization (IMO) for reducing carbon emissions from ships can be achieved by quantitatively analyzing the trends in technological advances of fuel oil consumption in the container shipping market. To achieve this purpose, several scenarios are designed considering various options such as eco-friendly fuels, low-speed operation, and the growth in ship size. Design/methodology - The vessel size and speed used in prior studies are utilized to estimate the fuel oil consumption of container ships and the pace of technological progress and Energy Efficiency Design Index (EEDI) regulations are added. A database of 5,260 container ships, as of 2019, is used for multiple linear regression and quantile regression analyses. Findings - The fuel oil consumption of vessels is predominantly affected by their speed, followed by their size, and the annual technological progress is estimated to be 0.57%. As the quantile increases, the influence of ship size and pace of technological progress increases, while the influence of speed and coefficient of EEDI variables decreases. Originality/value - The conservative estimation of carbon emission drawn by a quantitative analysis of the technological progress concerning the fuel efficiency of container vessels shows that it is not possible to achieve IMO targets. Therefore, innovative efforts beyond the current scope of technological progress are required.

A Study on the Driving Trajectory of AGV for Container Transport (컨테이너 운송용 AGV의 운동궤적에 관한 연구)

  • Park Jeong-Bo;Kim Min-Ju;Lee Seung-Soo;Kim Joong-Wan;Jeon Eon-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.96-102
    • /
    • 2004
  • In this study, we have developed the simulation tool in order to investigate driving trajectory of AGV for container transport. AGV for container transport is different from the indoor AGV in that it is a large size structure at being loaded the weight of 40 ton. and AGV for container transport is applied to front wheel steering, rear wheel steering, all wheel steering, and crap steering. Therefore, we have developed the simulation tool considering dynamic problems and a center of turning in accordance with fourth ways of steering mode. As the result of this study, we have confirmed that this tool is useful and cost-effective in the dynamic analysis or large size vehicles. Also, it is useful to calculate the minimum radius of turning for large size vehicles.

Conceptual design of ultra-high performance fiber reinforced concrete nuclear waste container

  • Othman, H.;Sabrah, T.;Marzouk, H.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.588-599
    • /
    • 2019
  • This research presents a structural design of high-level waste (HLW) container using ultra-high performance fiber reinforced concrete (UHP-FRC) material. The proposed design aims to overcome the drawbacks of the existing concrete containers which are heavy, difficult to fabricate, and expensive. In this study, the dry storage container (DSC) that commonly used at Canadian Nuclear facilities is selected to present the proposed design. The design has been performed such that the new UHP-FRC alternative has a structural stiffness equivalent to the existing steel-concrete-steel container under various loading scenarios. Size optimization technique is used with the aim of maximizing stiffness, and minimizing the cost while satisfying both the design stresses and construction requirements. Then, the integrity of the new design has been evaluated against accidental drop-impact events based on realistic drop scenarios. The optimization results showed: the stiffness of the UHP-FRC container (300 mm wall thick) is being in the range of 1.35-1.75 times the stiffness of existing DSC (550 mm wall thick). The use of UHP-FRC leads to decrease the container weight by more than 60%. The UHP-FRC container showed a significant enhancement in performance in comparison to the existing DSC design under considered accidental drop impact scenarios.