• 제목/요약/키워드: Container carrier

검색결과 121건 처리시간 0.023초

비정렬 격자를 이용한 선체 주위의 유동 해석 (ANALYSIS OF FLOW AROUND SHIP USING UNSTRUCTURED GRID)

  • 전제형;이상의;권재웅;손재우
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.187-193
    • /
    • 2011
  • In this report, We compared the actual test with the result of pow calculation and Resistance/Self-propulsion of the ship using STAR-CCM+ which is the commercial Reynolds Averaged Navier-Strokes(RANs) Solver. The calculation model was the KRISO Container Ship and 205K Bulk Carrier of Sungdong shipbuilding company. For this calculation, We used Realizable K-Epsilon model for flaw analysis, VOF method for the free surface creation, Moving Reference Frame method for reducing the POW calculation time, and Sliding Mesh method for Self-Propulsion analysis. Calculation of Resistance and Self-Propulsion includes the free-surface. And all calculations in this report were based on unstructured grids.

  • PDF

컨테이너선의 반류분포 특성 연구 (A Characteristic Study of Wake Distribution for Container Carrier)

  • 박성우;박노준;유용완
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.51-56
    • /
    • 2005
  • In this paper, a correlation analysis of wake distribution between model test and CFD was described. CFD calculation was performed by 'WAVIS' which is utilized in hullform development. By using the correlation between model test and CFD, we have estimated M/T wake distribution To control M/T and CFD wake distribution effectively. we have developed the program that it is possible to export to TECPLOT and visualize wake distribution.

  • PDF

Measuring hull girder deformations on a 9300 TEU containership

  • Koning, Jos;Schiere, Marcus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1111-1129
    • /
    • 2014
  • A 9300 TEU container carrier was equipped in 2006 with instrumentation aimed at wave induced accelerations, and motions. In 2010 the system was extended with strain sensors to include structural loads. Section loads for vertical bending could be readily obtained but the originally intended derivation of horizontal bending and torsion from the measured strains was found to be unreliable. This paper addresses an alternative approach that was adopted in the post processing of results. In particular the concept to use acceleration sensors to capture global hull deformations along the length of the hull, and the use of a data fusion procedure to obtain section loads from combined sensor data and finite element calculations. The approach is illustrated by comparison of actually measured accelerations and local strains with values obtained from the data fusion model. It is concluded that the approach is promising but in need of further validation and development. In particular the number and shapes of the modes used may not have been sufficient to represent the true deflection and thus strain distributions along the high loaded areas.

선박기본설계과정(船舶基本設計過程)에서의 경제성검토(經濟性檢討)와 최적화기법(最適化技法)의 응용(應用) (Economic Optimization in Preliminary Ship Design)

  • 김재근;한순흥
    • 대한조선학회지
    • /
    • 제15권4호
    • /
    • pp.1-5
    • /
    • 1978
  • The preliminary ship design step is made into a non-linear programming(NLP) problem. And using SUMT-exterior method and Hook Jeeves pattern search, the optimum ship characteristics are determined for the case where the ship is built in Korea and is operated by Koreans. Three programs for bulk carrier, tanker, and container ship are constructed and several sensitivity tests are performed. The result has little difference from the results of the other papers, but for high interest rate of return, slightly larger and faster ship is superior, and for low labour costs, slightly smaller and slower ship is superior.

  • PDF

Investigation of Applying Technical Measures for Improving Energy Efficiency Design Index (EEDI) for KCS and KVLCC2

  • Jun-Yup Park;Jong-Yeon Jung;Yu-Taek Seo
    • 한국해양공학회지
    • /
    • 제37권2호
    • /
    • pp.58-67
    • /
    • 2023
  • While extensive research is being conducted to reduce greenhouse gases in industrial fields, the International Maritime Organization (IMO) has implemented regulations to actively reduce CO2 emissions from ships, such as energy efficiency design index (EEDI), energy efficiency existing ship index (EEXI), energy efficiency operational indicator (EEOI), and carbon intensity indicator (CII). These regulations play an important role for the design and operation of ships. However, the calculation of the index and indicator might be complex depending on the types and size of the ship. Here, to calculate the EEDI of two target vessels, first, the ships were set as Deadweight (DWT) 50K container and 300K very large crude-oil carrier (VLCC) considering the type and size of those ships along with the engine types and power. Equations and parameters from the marine pollution treaty (MARPOL) Annex VI, IMO marine environment protection committee (MEPC) resolution were used to estimate the EEDI and their changes. Technical measures were subsequently applied to satisfy the IMO regulations, such as reducing speed, energy saving devices (ESD), and onboard CO2 capture system. Process simulation model using Aspen Plus v10 was developed for the onboard CO2 capture system. The obtained results suggested that the fuel change from Marine diesel oil (MDO) to liquefied natural gas (LNG) was the most effective way to reduce EEDI, considering the limited supply of the alternative clean fuels. Decreasing ship speed was the next effective option to meet the regulation until Phase 4. In case of container, the attained EEDI while converting fuel from Diesel oil (DO) to LNG was reduced by 27.35%. With speed reduction, the EEDI was improved by 21.76% of the EEDI based on DO. Pertaining to VLCC, 27.31% and 22.10% improvements were observed, which were comparable to those for the container. However, for both vessels, additional measure is required to meet Phase 5, demanding the reduction of 70%. Therefore, onboard CO2 capture system was designed for both KCS (Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship) and KVLCC2 (KRISO VLCC) to meet the Phase 5 standard in the process simulation. The absorber column was designed with a diameter of 1.2-3.5 m and height of 11.3 m. The stripper column was 0.6-1.5 m in diameter and 8.8-9.6 m in height. The obtained results suggested that a combination of ESD, speed reduction, and fuel change was effective for reducing the EEDI; and onboard CO2 capture system may be required for Phase 5.

한국 컨테이너 해상화물 표준장기운송계약서 쟁점에 관한 연구 - 손해배상예정액과 최소약정물량을 중심으로 - (A Study on the Disputable Issues of the Standard Form of Korea Service Contract - Focusing on Liquidated Damage and Minimum Quantity Commitment -)

  • 윤재웅;허윤석
    • 무역학회지
    • /
    • 제48권2호
    • /
    • pp.217-243
    • /
    • 2023
  • 본 연구는 컨테이너 해상화물 표준장기운송계약서 내용과 쟁점에 관한 연구이다. 한국은 한진해운 파산을 계기로 컨테이너 해상화물 부분에 장기계약 제도 및 표준장기운송계약서를 제작 배포(2019)하였으며 이후 공급망 위기때에 표준장기운송계약서를 개정(2022)하였다. 표준장기운송계약서는 선화주의 이해가 달라 합의가 필요한 항목들이 존재한다. 이에 본 연구에서는 표준장기운송계약서의 주요 내용을 분석하고 선화주에게 미치는 실무적 의미를 도출하였다. 아울러 표준장기운송계약서 제정과정에서 선화주의 최대 쟁점사항인 손해배상액예정액과 최소약정물량 대한 내용 및 성격과 의미를 분석하여 선화주가 동 조항에 대한 이해가 어떻게 달라지는지 분석해 보였다. 결론적으로 선화주는 장기운송계약에 손해배상예정액을 책정할 시 매우 합리적인 수준으로 책정해야 위약벌로 손해배상청구 소송을 별도로 진행하지 않게 된다. 또한 최소약정물량 책정과 더불어 균등 배분은 선사에게 매우 중요한 항목이기에 이를 포함하되 성수기에도 화주의 추가 선복 요구를 수용할 수 있도록 하는 우대 조건이 필요하다. 아울러 화주는 위약벌 대신 다른 장기계약에서도 활용 중인 이행보증을 통해 계약의 이행을 담보하는 것도 고려해 볼 수 있을 것이다.

안전성 및 효율성 관점에서의 다목적 실선 실험 (Multi-Objective Onboard Measurement from the Viewpoint of Safety and Efficiency)

  • 이상원;;조익순
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 추계학술대회
    • /
    • pp.116-118
    • /
    • 2023
  • 최근 환경오염에 대한 규제 강화로 인해 선박 운항은 경제적이며 지속가능한 최적화 항법에 대한 필요성이 대두되고 있다. 하지만 기상예보 기술의 발전에도 불구하고, 여전히 잘못된 기상예보로 인한 악천후에 조우하는 선박 사고들은 지속적으로 발생하고 있다. 본 연구에서는 악천후에 조우하는 선박의 실태를 파악하고 분석하기 위해, 운항중인 선박의 정보를 측정하고자 하였다. 여기서 측정한 데이터의 종류는 항해 (위치, 속도, 방위, 타각 등) 및 엔진 (엔진 회전수, 출력, 축 추력, 연료 소비량) 관련 정보, 기상 상태 (바람, 파도), 선박운동 (선박종, 횡운동 등) 등의 정보들이 포함되었다. 실측 실험을 시행한 선박의 종류는 28,000 DWT급 벌크선, 63,000 DWT급 벌크선, 20,000 TEU급 컨테이너선, 12,000 TEU급 컨테이너선박이다. 각 선박의 실선실험은 여러 가지 종류의 데이터를 각각 취득하여 다목적으로 선박 운항에 관련한 연구들에 활용하고자 한다. 또한 실선실험 시의 해상 상태를 확인하기 위해, 파도 시뮬레이션 모델을 이용하여 방향성 파랑 스펙트럼 등을 재현하였다. 실선 실험의 데이터 취득 및 파도 시뮬레이션 결과 등을 통하여, 선박레이더를 이용한 정확한 파도정보 파악 및 화물 붕괴 사고 등에 대한 연구를 진행하고 있다. 이에 더불어, 선박운항의 안전성 및 효율성 관점에서 다양하게 활용될 것으로 기대된다.

  • PDF

자유수면을 관통하는 거위목 벌브를 가진 선박 주위의 포텐셜 유동해석 (Potential Flow Analysis around Ship with Goose-neck Type Bulbous Bow Penetrating Free Surface)

  • 최희종;박일흠;김종규;김옥삼;전호환
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.18-22
    • /
    • 2011
  • The Ranking source panel method was used to predict the flow phenomenon of a ship with a goose-neck type bulbous bow penetrating the free surface. The non-linearity of the free surface boundary condition was fully satisfied using an iterative calculation method, and the raised panel method was adopted to obtain a more stable solution at each iteration step. The panel cutting method was applied to generate a hull calculation grid at each iteration step, including the first step. At that time, the nose of the goose-neck type bulbous bow was divided by the free surface and the free surface panel was modified at each iteration step using the variable free surface panel method. Numerical calculations were performed to investigate the validity and efficiency of the applied numerical algorithm using the 3600 TEU container carrier. The computed wave resistance coefficients were compared with the experimentally achieved residual resistance coefficients.

대형 컨테이너 선박의 유탄성 실선 계측 데이터 분석 Part I - 모달 파라미터 추정 (Full Scale Measurement Data Analysis of Large Container Carrier with Hydroelastic Response, Part I - Identification of Modal Parameters)

  • 김병훈;최병기;박준석;박성건;기혁근;김유일
    • 대한조선학회논문집
    • /
    • 제55권1호
    • /
    • pp.37-44
    • /
    • 2018
  • To understand the dynamic characteristics of the vessel with hydroelastic response, it is very important to estimate the dynamic modal parameters such as mode shapes, natural frequency, and damping ratio. These dynamic modal parameters of full scale ship are a priori unknowns, hence to be estimated directly based upon the full scale measurement data. In this paper, dynamic modal parameters were extracted by signal processing of acceleration and strain data measured from a large container ship whose loading capacity is 9400TEU. The mode shapes of the vibrating hull were identified using the proper orthogonal decomposition and the vibration response of hull was decomposed into its modal magnitudes. Natural frequencies of specific modes were derived via Fourier transform of these modal magnitude. Also, the free decay signal of the vibrating hull was obtained through the random decrement technique and the damping ratio was estimated with accuracy.

Ultimate strength performance of Northern sea going non-ice class commercial ships

  • Park, Dae Kyeom;Paik, Jeom Kee;Kim, Bong Ju;Seo, Jung Kwan;Li, Chen Guang;Kim, Do Kyun
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.613-632
    • /
    • 2014
  • In the early design stage of ships, the two most important structural analyses are performed to identify the structural capacity and safety. The first step is called global strength analysis (longitudinal strength analysis or hull girder strength analysis) and the second step is local buckling analysis (stiffened panel strength analysis). This paper deals with the ultimate strength performance of Arctic Sea Route-going commercial ships considering the effect of low temperature. In this study, two types of structural analyses are performed in Arctic sea conditions. Three types of ship namely oil tanker, bulk carrier and container ship with four different sizes (in total 12 vessels) are tested in four low temperatures (-20, -40, -60 and $-800^{\circ}C$), which are based on the Arctic environment and room temperature ($20^{\circ}C$). The ultimate strength performance is analysed with ALPS/HULL progressive hull collapse analysis code for ship hulls, then ALPS/ULSAP supersize finite element method for stiffened panels. The obtained results are summarised in terms of temperature, vessel type, vessel size, loading type and other effects. The important insights and outcomes are documented.