• Title/Summary/Keyword: Container Loading

Search Result 299, Processing Time 0.024 seconds

A Study On Optimized Design of Decision Support Systems for Container Terminal Operations (컨테이너 터미널 운영을 위한 의사결정시스템 설계의 최적화에 관한 연구)

  • Hong, Dong-Hee;Chung, Tae-Choong
    • The KIPS Transactions:PartA
    • /
    • v.10A no.5
    • /
    • pp.519-528
    • /
    • 2003
  • Container terminals need decisions in the course of daily-24 hour and 365 day - operations, and all these decisions are inter-related. The ultimate goal of Decision Support System is to minimize ship loading/unloading time, resources used to handle the workload, and congestion on the roads inside the terminal. It is also to make the best possible use of the storage space available. Therefore, the necessity of decision support tools are emphasized to enhance the operational efficiency of container shipping terminals more, because of limits and complexity of these decisions. So, in thia paper, we draw evaluation items for Decision Support Systems and suggest optimization strategy of evaluation items which have the greatest influence on Decision Support system, that is, yard stacking allocation, RTGC deployment among blocks, and YT allocation to QCs. We also estimate the efficiency of Decision Support System design by simulation using G2 language, comparing ship loading/unloading time.

Planning for Intra-Block Remarshaling to Enhance the Efficiency of Loading Operations in an Automated Container Terminal (자동화 컨테이너 터미널의 적하 작업 효율 향상을 위한 블록 내 재정돈 계획 수립 방안)

  • Park, Ki-Yeok;Park, Tae-Jin;Kim, Min-Jung;Ryu, Kwang-Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.4
    • /
    • pp.31-46
    • /
    • 2008
  • A stacking yard of a container terminal is a space for temporarily storing the containers that are carried in or imported until they are carried out or exported. If the containers are stacked in an inappropriate way, the efficiency of operation at the time of loading decreases significantly due to the rehandlings. The remarshaling is the task of rearranging containers during the idle time of transfer crane for the effective loading operations. This paper proposes a method of planning for remarshaling in a yard block of an automated container terminal. Our method conducts a search in two stages. In the first stage, the target stacking configuration is determined in such a way that the throughput of loading is maximized. In the second stage, the crane schedule is determined so that the remarshaling task can be completed as fast as possible in moving the containers from the source configuration to the target configuration. Simulation experiments have been conducted to compare the efficiency of loading operations before and after remarshaling. The results show that our remarshaling plan is really effective in increasing the efficiency of loading operation.

  • PDF

Real-time Job Reallocation Problem in Container Terminals (컨테이너 터미널의 효율적인 실시간 작업 재할당 연구)

  • Bak, Na-Hyun;Shin, Jae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.82-83
    • /
    • 2012
  • To achieve higher customer service, the operational efficiency of container terminal is important. So, to improve loading/unloading speed and reduce the time spending of berth, efficient ship planning is performed in advance. But, the condition of container terminal can be changed frequently and the pre-planning is not enough to operate container terminal sufficiently, so that we need real-time planning. This paper aims to define the problem of job reallocation of quay crane to minimize total operation time, and find the solution.

  • PDF

A Study on Determination of Optimal Prevention Maintenance Interval for Gantry Crane in Container Terminal (선박작업 생산성 향상을 위한 갠트리 크레인의 고장분석 및 예방보전 주기 결정에 관한 연구)

  • Kim Hwan-Seong;Kim Young-Ho;Tran Ngoc Hoang Son
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.339-344
    • /
    • 2006
  • The productivity for container hand1ing in container ship is a important role in container terminal, and it is mainly depended on the productivity of gantry crane. From the failure of gantry crane, the crane will be stopped until the repair of the failure. During the repair, the loading and/or discharging for container ship is suspended, and the productivities of the container ship and the yard is just hold. Thus, the prevention maintenance is importance to make a keep the steady state condition for all equipments in container terminal. In this paper, we deal with a optimal determination method of prevention maintenance interval for gantry crane systems. For verification, we will make a productivity of gantry crane and adapt to total container handling in each ship by simulation.

  • PDF

Conceptual design of ultra-high performance fiber reinforced concrete nuclear waste container

  • Othman, H.;Sabrah, T.;Marzouk, H.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.588-599
    • /
    • 2019
  • This research presents a structural design of high-level waste (HLW) container using ultra-high performance fiber reinforced concrete (UHP-FRC) material. The proposed design aims to overcome the drawbacks of the existing concrete containers which are heavy, difficult to fabricate, and expensive. In this study, the dry storage container (DSC) that commonly used at Canadian Nuclear facilities is selected to present the proposed design. The design has been performed such that the new UHP-FRC alternative has a structural stiffness equivalent to the existing steel-concrete-steel container under various loading scenarios. Size optimization technique is used with the aim of maximizing stiffness, and minimizing the cost while satisfying both the design stresses and construction requirements. Then, the integrity of the new design has been evaluated against accidental drop-impact events based on realistic drop scenarios. The optimization results showed: the stiffness of the UHP-FRC container (300 mm wall thick) is being in the range of 1.35-1.75 times the stiffness of existing DSC (550 mm wall thick). The use of UHP-FRC leads to decrease the container weight by more than 60%. The UHP-FRC container showed a significant enhancement in performance in comparison to the existing DSC design under considered accidental drop impact scenarios.

Development of Preliminary Design Model for Ultra-Large Container Ships by Genetic Algorithm

  • Han, Song-I;Jung, Ho-Seok;Cho, Yong-Jin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.233-238
    • /
    • 2012
  • In this study, we carried out a precedent investigation for an ultra-large container ship, which is expected to be a higher value-added vessel. We studied a preliminary optimized design technique for estimating the principal dimensions of an ultra-large container ship. Above all, we have developed optimized dimension estimation models to reduce the building costs and weight, using previous container ships in shipbuilding yards. We also applied a generalized estimation model to estimate the shipping service costs. A Genetic Algorithm, which utilized the RFR (required freight rate) of a container ship as a fitness value, was used in the optimization technique. We could handle uncertainties in the shipping service environment using a Monte-Carlo simulation. We used several processes to verify the estimated dimensions of an ultra-large container ship. We roughly determined the general arrangement of an ultra-large container ship up to 1500 TEU, the capacity check of loading containers, the weight estimation, and so on. Through these processes, we evaluated the possibility for the practical application of the preliminary design model.

A Study On Operation Method of Handling Equipments in Automated Container Terminals (자동화 컨테이너터미널에서 운송장비의 운영방안에 관한 연구)

  • Choi, Hyung-Rim;Park, Nam-Kyu;Park, Byung-Joo;Kwon, Hae-Kyung;Yoo, Dong-Ho
    • IE interfaces
    • /
    • v.17 no.2
    • /
    • pp.233-241
    • /
    • 2004
  • The main subject to become a hub port is automation. The automated container terminal has already operated in advanced ports and it has been planned for the basic planning and operation design in domestic case. The key of automated container terminal is effective operation of both ATC(automated transfer crane) and AGV(automated guided vehicle) which is automated handling equipments. This is essential to productivity of automated container terminal. This study suggests the most optimal method of equipment operation in order to minimize loading time using each three types of effective ATC operation methods and AGV dispatching rules in automated container terminals. As the automated equipment operation causes unexpected deadlocks or interferences, it should be proceeded on event-based real time. Therefore we propose the most effective ATC operation methods and AGV dispatching rules in this paper. The various states occurred in real automated container terminals are simulated to evaluate these methods. This experiment will show the most robust automated equipment operation method on various parameters(the degree of yard re-marshaling, the number of containers and AGV)

A Recognition Method of Container ISO-code for Vision & Information System in Harbors (항만 영상정보시스템 구축을 위한 컨테이너 식별자 인식)

  • Koo, Kyung-Mo;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.721-723
    • /
    • 2007
  • Recently, the size and location of the acquired container image while the container is loading and unloading in Harbors is not fixed. And it is difficult to get a good image for recognition because of the variation of external environment as those the size of container and where the yard-tractor stop is. In this paper, we estimate where the container ISO-code set is using Top-hat transform from realtime images and get an image to recognize container ISO-code using PAN/TILT/ZOOM camera. We extract the container ISO-code using Top-hat transform and Histogram projection. After binarization, we extract each character from complex background using labeling. We use BP(Backpropagation Network) to recognize extracted characters.

  • PDF

Structural Design of a Container Crane Part-Jaw, Using Metamodels (메타모델을 이용한 크레인 부품 조의 구조설계)

  • Song, Byoung-Cheol;Bang, Il-Kwon;Han, Dong-Seop;Han, Geun-Jo;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Rail clamps are mechanical components installed to fix the container crane to its lower members against wind blast or slip. According to rail clamps should be designed to survive harsh wind loading conditions. In this study, a jaw structure, which is a part of a wedge-typed rail clamp, is optimized with respect to its strength under a severe wind loading condition. According to the classification of structural optimization, the structural optimization of a jaw is included in the category of shape optimization. Conventional structural optimization methods have difficulties in defining complex shape design variables and preventing mesh distortions. To overcome the difficulties, the metamodel using Kriging interpolation method is introduced to replace the true response by an approximate one. This research presents the shape optimization of a jaw using iterative Kriging interpolation models and a simulated annealing algorithm. The new Kriging models are iteratively constructed by refining the former Kriging models. This process is continued until the convergence criteria are satisfied. The optimum results obtained by the suggested method are compared with those obtained by the DOE (design of experiments) and VT (variation technology) methods built in ANSYS WORKBENCH.

  • PDF

Scoping Calculations on Criticality and Shielding of the Improved KAERI Reference Disposal System for SNFs (KRS+)

  • Kim, In-Young;Cho, Dong-Keun;Lee, Jongyoul;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.37-50
    • /
    • 2020
  • In this paper, an overview of the scoping calculation results is provided with respect to criticality and radiation shielding of two KBS-3V type PWR SNF disposal systems and one NWMO-type CANDU SNF disposal system of the improved KAERI reference disposal system for SNFs (KRS+). The results confirmed that the calculated effective multiplication factors (keff) of each disposal system comply with the design criteria (< 0.95). Based on a sensitivity study, the bounding conditions for criticality assumed a flooded container, actinide-only fuel composition, and a decay time of tens of thousands of years. The necessity of mixed loading for some PWR SNFs with high enrichment and low discharge burnup was identified from the evaluated preliminary possible loading area. Furthermore, the absorbed dose rate in the bentonite region was confirmed to be considerably lower than the design criterion (< 1 Gy·hr-1). Entire PWR SNFs with various enrichment and discharge burnup can be deposited in the KRS+ system without any shielding issues. The container thickness applied to the current KRS+ design was clarified as sufficient considering the minimum thickness of the container to satisfy the shielding criterion. In conclusion, the current KRS+ design is suitable in terms of nuclear criticality and radiation shielding.