• Title/Summary/Keyword: Contact-loading

Search Result 523, Processing Time 0.028 seconds

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

Numerical investigation of continuous composite girders strengthened with CFRP

  • Samaaneh, Mohammad A.;Sharif, Alfarabi M.;Baluch, Mohammed H.;Azad, Abul K.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1307-1325
    • /
    • 2016
  • Nonlinear behavior of two-span, continuous composite steel-concrete girders strengthened with Carbon Fiber Reinforced Polymers (CFRP) bonded to the top of concrete slab over the negative moment region was evaluated using a non-linear Finite Element (FE) model in this paper. A three-dimensional FE model of continuous composite girder using commercial software ABAQUS simulated and validated with experimental results. The interfacial regions of the composite girder components were modeled using suitable interface elements. Validation of the proposed numerical model with experimental data confirmed the applicability of this model to predict the loading history, strain level for the different components and concrete-steel relative slip. The FE model captured the different modes of failure for the continuous composite girder either in the concrete slab or at the interfacial region between CFRP sheet and concrete slab. Through a parametric study, the thickness of CFRP sheet and shear connection required to develop full capacity of the continuous composite girder at negative moment zone have been investigated. The FE results showed that the proper thickness of CFRP sheet at negative moment region is a function of the adhesive strength and the positive moment capacity of the composite section. The shear connection required at the negative moment zone depends on CFRP sheet's tensile stress level at ultimate load.

Nonlinear finite element analysis of loading transferred from column to socket base

  • Anil, Ozgur;Uyaroglu, Burak
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.475-492
    • /
    • 2013
  • Since the beginning of the 90 s, depending on the growth of the industrial sector in Turkey, factory constructions have been increased. The cost of precast concrete buildings is lower than the steel ones for this reason the precast structural systems are used more. Precast concrete structural elements are mostly as strong as not to have damage in the earthquake but weakness of connections between elements causes unexpected damages of structure during earthquake. When looking at the previous researches, it can be seen that there is a lack of studies about socket type base connections although there were many experimental and analytical studies about the connections of precast structural elements. The aim of this study is to investigate the stress transfer mechanism between column and the socket base wall with finite element method. For the finite element analysis ANSYS software was used. A finite element model was created which is the simulation of experimental research executed by Canha et al. (2009) under vertical and horizontal forces. Results of experimental research and finite element analysis were compared to create a successful simulation of experimental program. After determining the acceptable parameters, models of socket bases were created. Model dimensions were chosen according to square section column sizes 400, 450, 500, 550 and 600 mm which were mostly used in industrial buildings. As a result of this study, stress distribution at center section of the socket base models were observed and it is found that stress distribution affects triangular at the half of socket bottom and top.

A Study on a New Concept for the Structural Strength Assessment to Development of Membrane LNG Cargo Container System under Static Load (멤브레인형 LNG 화물창 개발을 위한 정적 구조 안전성 평가 모델 연구)

  • Hwang, Se Yun;Kim, Yooil;Kang, Joong Kyoo;Lee, Jang Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.162-169
    • /
    • 2016
  • A new concept of membrane type LNG CCS was proposed. Also, its static behavior was numerically analyzed considering the interaction between primary and secondary barrier together with securing device. Hull deflection was taken into account as an external load, together with temperature distribution across the barriers. The suggested numerical model considers both sliding and contact between the two mating surfaces of both the primary and secondary barrier, and anisotropic material behavior of plywood, R-PUF was also taken into account. Furthermore, detailed local strength was evaluated for the securing device, which is arranged between two barriers to hold the primary barrier. It was confirmed through the numerical analysis that the new concept of membrane type CCS was structurally safe under static loading condition and securing concept was structurally reliable.

Application of multivariate statistics towards the geochemical evaluation of fluoride enrichment in groundwater at Shilabati river bank, West Bengal, India

  • Ghosh, Arghya;Mondal, Sandip
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.279-288
    • /
    • 2019
  • To obtain insightful knowledge of geochemical process controlling fluoride enrichment in groundwater of the villages near Shilabati river bank, West Bengal, India, multivariate statistical techniques were applied to a subgroup of the dataset generated from major ion analysis of groundwater samples. Water quality analysis of major ion chemistry revealed elevated levels of fluoride concentration in groundwater. Factor analysis (FA) of fifteen hydrochemical parameters demonstrated that fluoride occurrence was due to the weathering and dissolution of fluoride-bearing minerals in the aquifer. A strong positive loading (> 0.75) of fluoride with pH and bicarbonate for FA indicates an alkaline dominated environment responsible for leaching of fluoride from the source material. Mineralogical analysis of soli sediment exhibits the presence of fluoride-bearing minerals in underground geology. Hierarchical cluster analysis (HCA) was carried out to isolate the sampling sites according to groundwater quality. With HCA the sampling sites were isolated into three clusters. The occurrence of abundant fluoride in the higher elevated area of the observed three different clusters revealed that there was more contact opportunity of recharging water with the minerals present in the aquifer during infiltration through the vadose zone.

Performance of bridge structures under heavy goods vehicle impact

  • Zhao, Wuchao;Qian, Jiang;Wang, Juan
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.515-525
    • /
    • 2018
  • This paper presents a numerical study on the performance of reinforced concrete (RC) bridge structures subjected to heavy goods vehicle (HGV) collision. The objectives of this study are to investigate the dynamic response and failure modes of different types of bridges under impact loading as well as to give an insight into the simplified methods for modeling bridge structures. For this purpose, detailed finite-element models of HGV and bridges are established and verified against the full-scale collision experiment and a recent traffic accident. An intensive parametric study with the consideration of vehicle weight, vehicle velocity, structural type, simplified methods for modeling bridges is conducted; then the failure mode, impact force, deformation and internal force distribution of the validated bridge models are discussed. It is observed that the structural type has a significant effect on the force-transferring mechanism, failure mode and dynamic response of bridge structures, thus it should be considered in the anti-impact design of bridge structures. The impact force of HGV is mainly determined by the impact weight, impact velocity and contact interface, rather than the simplification of the superstructure. Furthermore, to reduce the modeling and computing cost, it is suggested to utilize the simplified bridge model considering the inertial effect of the superstructure to evaluate the structural impact behavior within a reasonable precision range.

Nexus Between Social Media and Brand Preference of Smart Mobile Phones: An Empirical Study in Sri Lanka

  • KUMARADEEPAN, Vasanthakumar
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.241-249
    • /
    • 2021
  • The aim of the research is to evaluate the impact of social media marketing (with special reference to Facebook) on the brand preference of customers with regard to smart mobile phones. Since Facebook has become very popular today and a trend has arisen to use social media as a marketing tool, the researcher intended to evaluate the impact of social media marketing on brand preference, as the findings would provide valuable insight for future businesses. Social media as measured social media visibility, social media engagement, and social media influencewas the independent variableand brand preference was the dependent variable. The convenience sampling method was used where the sample was taken from a group of people easy to contact or to reach. A sample of 186 young males and females was selected. Factor loading and factor analysis were used to analyze the data and find the most influencing factors on brand preference. Reliability analysis, validity analysis, and regression analysiswere performed to analyze the data. The R2 value is 0.320 implying that 32.00% of the variance in brand preference is explained by social media influence, social media engagement, and social media visibility. The findings show thatsocial media visibility, social media engagement, and social media influencehave a positive impact on brand preference.

Maxillo-mandibular Defect Reconstruction with Bilateral Free Fibula Flaps with Dental Implant Placement and Immediate Loading: A Case Report of the Three-team Approach

  • Nazarian, David;Dikarev, Aleksei;Mokhirev, Mikhail;Zakharov, Georgy;Fedosov, Alexander;Potapov, Maksim;Chernenkiy, Mikhail;Vasilev, Yuriy;Kyalov, Grigoriy;Chausheva, Saniyat;Khachatryan, Arbak;Tevosyan, Artur;Arakelyan, Gevorg
    • Archives of Plastic Surgery
    • /
    • v.49 no.5
    • /
    • pp.652-655
    • /
    • 2022
  • Patients with advanced malignant tumors, including both jaws, is a challenging task for a head and neck surgeon. Current treatment landscape demonstrates good functional, anatomical, and aesthetic results in patients who could previously receive only palliative care. The extensive tissue defects resulting from oncological resections in the head and neck region require immediate reconstruction due to the exposure of vital structures and their contact with the external environment. A patient was operated using a three-team multidisciplinary approach involving simultaneous work of three specialized teams of maxillofacial and reconstructive microsurgeons, as well as an implantologist and a prosthodontist. This approach allowed simultaneous tumor resection with subsequent reconstruction of the intraoperative defect involving bilateral harvesting of two revascularized free fibular osteomusculocutaneous flaps with dental implantation and simultaneous rehabilitation of dentition with crowns.

Finite element micro-modelling of RC frames with variant configurations of infill masonry

  • Mohammad, Aslam F.;Khalid, Fatima;Khan, Rashid A.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • The presence of infill generally neglected in design despite the fact that infill contribution significantly increase the lateral stiffness and strength of the reinforced concrete frame structure. Several experimental studies and computational models have been proposed to capture the rational response of infill-frame interaction at global level. However, limited studies are available on explicit finite element modelling to study the local behavior due to high computation and convergence issues in numerical modelling. In the current study, the computational modelling of RC frames is done with various configurations of infill masonry in terms of types of blocks, lateral loading and reinforcement detailing employed with material nonlinearities, interface contact issues and bond-slip phenomenon particularly near the beam-column joints. To this end, extensive computational modelling of five variant characteristics test specimens extracted from the detailed experimental program available in literature and process through nonlinear static analysis in FEM code, ATENA generally used to capture the nonlinear response of reinforced concrete structures. Results are presented in terms of damage patterns and capacity curves by employing the finest possible detail provided in the experimental program. Comparative analysis shows that good correlation amongst the experimental and numerical simulated results both in terms of capacity and crack patterns.

Capture of Volatile Organic Iodine Species Using Mordenites

  • Tejaswini Vaidya;John P. Stanford;Nicolene van Rooyen;Krishnan Raja;Vivek Utgikar;Piyush Sabharwall
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.205-224
    • /
    • 2023
  • The emission of off-gas streams from used fuel recycling is a concern in nuclear energy usage as they contain radioactive compounds, such as, 3H, 14C, 85Kr, 131I, and 129I that can be harmful to human health and environment. Radioactive iodine, 129I, is particularly troublesome as it has a half-life of more than 15 million years and is prone to accumulate in human thyroid glands. Organic iodides are hazardous even at very low concentrations, and hence the capture of 129I is extremely important. Dynamic adsorption experiments were conducted to determine the efficiency of sodium mordenite, partially exchanged silver mordenite, and fully exchanged silver mordenite for the removal of methyl iodide present at parts per billion concentrations in a simulated off-gas stream. Kinetic analysis of the system was conducted incorporating the effects of diffusion and mass transfer. The possible reaction mechanism is postulated and the order of the reaction and the values of the rate constants were determined from the experimental data. Adsorbent characterization is performed to investigate the nature of the adsorbent before and after iodine loading. This paper will offer a comprehensive understanding of the methyl iodide behavior when in contact with the mordenites.