• Title/Summary/Keyword: Contact-loading

Search Result 523, Processing Time 0.031 seconds

Biologic stability of plasma ion-implanted miniscrews

  • Cho, Young-Chae;Cha, Jung-Yul;Hwang, Chung-Ju;Park, Young-Chel;Jung, Han-Sung;Yu, Hyung-Seog
    • The korean journal of orthodontics
    • /
    • v.43 no.3
    • /
    • pp.120-126
    • /
    • 2013
  • Objective: To gain basic information regarding the biologic stability of plasma ion-implanted miniscrews and their potential clinical applications. Methods: Sixteen plasma ion-implanted and 16 sandblasted and acid-etched (SLA) miniscrews were bilaterally inserted in the mandibles of 4 beagles (2 miniscrews of each type per quadrant). Then, 250 - 300 gm of force from Ni-Ti coil springs was applied for 2 different periods: 12 weeks on one side and 3 weeks contralaterally. Thereafter, the animals were sacrificed and mandibular specimens including the miniscrews were collected. The insertion torque and mobility were compared between the groups. The bone-implant contact and bone volume ratio were calculated within 800 mm of the miniscrews and compared between the loading periods. The number of osteoblasts was also quantified. The measurements were expressed as percentages and analyzed by independent t-tests (p < 0.05). Results: No significant differences in any of the analyzed parameters were noted between the groups. Conclusions: The preliminary findings indicate that plasma ion-implanted miniscrews have similar biologic characteristics to SLA miniscrews in terms of insertion torque, mobility, bone-implant contact rate, and bone volume rate.

Study on Effective Case Depth for Case Hardened Rolling Bearings (탄소 표면경화처리 구름베어링의 유효 경화 깊이에 대한 고찰)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • The effective case depth for case-hardened rolling bearing has been discussed. For this purpose, rolling contact fatigue tests for ball bearings built with inner race of various hardness values were conducted until L10 calculating rating life using a bearing life test machine under radial loading. Then, the distribution of residual stress below the inner raceway, which depended on the hardness value, was measured by X-ray diffraction. As a result, the linear relationship was established between the hardness value of the inner race and the theoretical shear stress evaluated at the depth where the residual stress disappeared below the inner raceway. Based on the relationship, it could be found that the factor of safety in bearing manufacturer’s rules for the effective case depth of case hardened rolling bearings was set higher. However, it could be also found that the hardness values at the depth where the maximum shearing stress acted below the raceway surface in a tapered roller bearing hardened by the carburizing process, were not sufficient for preventing plastic deformation under the basic dynamic load rating. Consequently, further efforts were still required to reduce or to disperse the contact load on the material design of a rolling bearing in order to prolong its life.

Multi-point displacement monitoring of bridges using a vision-based approach

  • Ye, X.W.;Yi, Ting-Hua;Dong, C.Z.;Liu, T.;Bai, H.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.315-326
    • /
    • 2015
  • To overcome the drawbacks of the traditional contact-type sensor for structural displacement measurement, the vision-based technology with the aid of the digital image processing algorithm has received increasing concerns from the community of structural health monitoring (SHM). The advanced vision-based system has been widely used to measure the structural displacement of civil engineering structures due to its overwhelming merits of non-contact, long-distance, and high-resolution. However, seldom currently-available vision-based systems are capable of realizing the synchronous structural displacement measurement for multiple points on the investigated structure. In this paper, the method for vision-based multi-point structural displacement measurement is presented. A series of moving loading experiments on a scale arch bridge model are carried out to validate the accuracy and reliability of the vision-based system for multi-point structural displacement measurement. The structural displacements of five points on the bridge deck are measured by the vision-based system and compared with those obtained by the linear variable differential transformer (LVDT). The comparative study demonstrates that the vision-based system is deemed to be an effective and reliable means for multi-point structural displacement measurement.

Effects on the Adjacent Motion Segments according to the Artificial Disc Insertion (인공 추간판 적용으로 인한 인접 운동 분절의 영향)

  • Kim, Young-Eun;Yun, Sang-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.122-129
    • /
    • 2007
  • To evaluate the effect of artificial disc implantation and fusion on the biomechanics of adjacent motion segment, a nonlinear three-dimensional finite element model of whole lumbar spine (L1-S1) was developed. Biomechanical analysis was performed for two different types of artificial disc, ProDisc and SB $Charit{\acute{e}}$ III model, inserted at L4-L5 level and these results were also compared with fusion case. Angular motion of vertebral body, forces on the spinal ligaments and facet joint under sagittal plane loading with a compressive preload of 150 N at a nonlinear three-dimensional finite element model of Ll-S1 were compared. The implant did not significantly alter the kinematics of the motion segment adjacent to the instrumented level. However, $Charit{\acute{e}}$ III model tend to decrease its motion on the adjacent levels, especially in extension motion. Contrast to motion and ligament force changes, facet contact forces were increased in the adjacent levels as well as implanted level for constrained instantaneous center of rotation model, i.e. ProDisc model.

Forging Die Design using Ceramic Insert (세라믹 인서트를 이용한 단조 금형설계)

  • 권혁홍
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2000
  • The use of ceramic inserts in steel forging tools offers significant technical and economic advantages over other materi-als of manufacture. These potential benefits can however only be realised by optimal design of the tools so that the ceramic insert are not subjected to stresses that led to their premature failure. In this paper the data on loading of the tools is determined from a commercial forging simulation package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite-element die-stress analysis. Process simulation and stress analysis are thus combined during the design and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic detections generated in shrink fitting the die inserts and that caused by the stresses generated in the forging process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads. Simulation results have been validated as a result of experimental investigation. Laboratory tests on ceramic insert dies have verified the superior performance of the Zirconia and Silicon Nitride ceramic insert in order to prolong maintenance life.

  • PDF

Strain rate effects on soil-geosynthetic interaction in fine-grained soil

  • Safa, Maryam;Maleka, Amin;Arjomand, Mohammad-Ali;Khorami, Masoud;Shariati, Mahdi
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.533-542
    • /
    • 2019
  • Geosynthetic reinforced soil method in coarse-grained soils has been widely used in last decades. Two effective factors on soil-geosynthetic interaction are confining stresses and loading rate in clay. In terms of methodology, one pull-out test with four different strain rates, namely 0.75, 1.25, 1.75 and 2.25 mm/min, and three different normal stresses equal to 20, 50, and 80 kg have been performed on specimens with dimensions of 30×30×17 cm in the saturated, consolidated condition. The obtained results have demonstrated that activation of geosynthetic strength at contact surface depends on the applied stress. In addition, the increase in normal stress would increase the shear strength at contact surface between clay and geogrid. Moreover, it is concluded that the strain rate increment would increase the shear strength.

Mechanical Strength Experiment of Carbon/Carbon Composite for Aircraft Brake Disk (탄소/탄소 브레이크 디스크의 기계적 강도 시험에 관한 연구)

  • 유재석;오세희;김천곤;홍창선;윤병일;김광수
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.55-62
    • /
    • 2000
  • The strength test was done for the Carbon/Carbon rotor disk which is the critical part of a carbon/carbon brake system in an operating time. The loading fixture was designed for the static strength test of a single carbon/carbon brake disk using finite element analysis. To simulate the real dynamic system in a static condition, the friction surface of the rotor disk was fixed and static load was applied to the rotor slot in the circumferential direction. The described failure mechanism of the brake disk can be described as matrix cracking occurred first at the contact surface of the rotor slot, subsequent delamination from the cracked contact surface, and the final fracture at the notch of the rotor.

  • PDF

Contact Pressure of Non-Pneumatic Tires with Auxetic spokes (Auxetic Spoke로 설계된 비공기압 타이어의 접지압)

  • Kim, Kwang-Won;Kim, Doo-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.719-724
    • /
    • 2011
  • A Non_Pneumatic tire (NPT) has spoke to replace air of the pneumatic tires. A NPT appears to have advantages over the conventional pneumatic tire in terms of flat proof and maintenance free. And a NPT can also be used in the space environment since it uses no air for inflation. In this study, the static contact pressure of NPTs with auxetic honeycomb spokes is investigated as a function of vertical loading and is compared with that of a pneumatic tire. The finite element based numerical simulation of the local stress of an airless tire is carried out with ABAQUS for varying vertical force and honeycomb spokes geometries.

Mechanics of Micro-Damage at Contact portion of Two Grains (두 입자의 접촉면에서의 손상역학 해석)

  • 정교철;김원영
    • The Journal of Engineering Geology
    • /
    • v.4 no.2
    • /
    • pp.231-243
    • /
    • 1994
  • To better understand the fundamental problems of the true micro-damage in medium-grained granite under uniaxial compressive stress, micro-damage localization, initiation and propagation have been observed in a great detail in contact portion of two grains such as quartz and feldspar. For this purpose, new experimental system allowing us to observe the micro-damaging process continuously was developed. Earlier studies used the specimens of unloaded state and it is difficult to visualize stress-induced microcracks under unloading state. Thus, direct observation under loading state is very important for understanding the true micro-damage process. The results explain well the mechanism of micro-damage at two grains, and mechanics of the micro-damage is clarified well by Hertzian fracture mechanics.

  • PDF

In-process Topographical Evaluation of CBN wheel surface

  • Lee, Joosang;Kim, Heenam;Minsung Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.507-513
    • /
    • 1998
  • In surface grinding, the conditions of the grinding wheel has much more significant effect on the machined workpiece as compared to other metal removal processes. The contact between the grinding wheel and the workpiece introduce heat and resistance, which restrict the self-dressing of the grits and result in burrs cracks on the workpiece. Therefore, before or during the grinding operation, it is necessary to self-dressing the grinding wheel for more accurate performance. In general, however, the choice of the dressing time has made by the operator's own decision or the condition of the workpiece. In this paper, a new method for finding the optimal dressing time of the grinding wheel is proposed. In order to develop a more sophisticated methodology, a non-contacting in-process optical measurement method using a laser beam has been introduced to find the glazing, loading, and spilling of the grinding wheel Simultaneously, a three-dimensional computer simulation of the grinding operation has been attempted based on the contact mechanism between the grinding wheel and the workpiece. The grains of the grinding wheel are simulated and the optimal dressing time is determined based on the amount of grain wear and work surface roughness.

  • PDF