• 제목/요약/키워드: Contact-free Surface Actuator

검색결과 5건 처리시간 0.022초

비접촉식 평면구동기의 동특성해석 (Dynamic Analysis of the Contact-free Surface Actuator)

  • 이상헌;백윤수
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.663-670
    • /
    • 2003
  • As the micro-technologies in the high precision manufacturing processes are developed, the demand for micro actuating device is increasing. But, it is difficult to achieve high resolution and wide operating range simultaneously with the conventional actuating systems which are contacting and type of dual servo system. So, the contact-free surface actuators whose movers are suspended or levitated were proposed. These systems can be applied to high precision stages and alignment apparatuses. The suspended mover can be assumed to be rigid body, but the mover is a structure in this study, therefore the vibration caused during the operating process has a serious adverse effect on the performance and it is very important to identify the vibrational characteristics. In this paper, a contact-free surface actuator is modeled in finite element method and updated by using the experimental modal data. Finally, the static and dynamic characteristics of the finite element model are predicted and then discussed.

비접촉 평면 구동기의 자기력 조합 방식 구동 원리 (A Study on the Driving Principles of a Novel Non-contact Surface Actuator Using Combination of Magnetic Force)

  • 정광석;백윤수
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.115-121
    • /
    • 2001
  • In micro automation technology, the concurrent realization of a high resolution and a large operating rage has been achieved by a dual actuator, usually called by piggy-back system, conventionally. But, because of its manufacturing cost, the complexity of control, and the limit of overall bandwidth, the contract-free and single servo actuators have been suggested with specific applications. In this paper, we suggest a novel non-contact surface actuator suing combination of the Lorentz force and the magnetized force, and discuss the actuating principles including an analytical approach. Differently from the existing planar system, an operating range of the suggested system can be expanded by an additional attachment of active elements. Therefore, it is estimated to be suitable for the next-generation moving system.

  • PDF

자기 흡인식 부상 원리에 기초한 비접촉식 서피스 액추에이터의 초정밀 범용 스테이지에의 적용 가능성 (Feasibility Study of General-purpose Precision Stage Using A Novel Contact-Free Surface Actuator Based on Magnetic Suspension Technology)

  • 정광식;이상헌;백윤수
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.452-460
    • /
    • 2002
  • The precision stage using a novel contact-free planar actuator based on magnetic farces, magnetized force and Lorentz farce, is suggested. In the promising magnetic structure, the mover is driven directly without any transmission mechanism, and doesn't need any auxiliary driver for its posture calibration. Then it is estimated that the proposed operating principle is very suitable for work requiring high accuracy and cleanness, or general-purpose nano-stage. In this paper, we discuss a driving principle of the planar system including the magnetic force generation mechanism, a framework for the force model, governing characteristics of the levitated plate, and a planar motion control of the constructed prototype. And experimental results are given to verify the derived theoretical model and a feasibility of the system.

Switched Reluctance 추진 원리에 기초한 자기 부상형 위치결정기구 (A Magnetic Suspension Stage Based on the Switched Reluctance Propulsion Principle)

  • 이상헌
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.622-630
    • /
    • 2006
  • This paper is about the magnetic suspension stage based on the Switched Reluctance propulsion principle. Because the previous studies on contact-free stage adopted the Lorentz force for main force generation mechanism they have suffered from thermal problem deteriorating the precision. Thus, the magnetic suspension stage adopting SR principle which can achieve high force density is proposed. The main operating principle and structure for achieving high resolution and long travel range are represented. The magnetic force analysis of each actuator, providing back data for dynamic modeling and controller design are carried out. By conducting basic experiments, the feasibility of the proposed system is shown. In addition the problems which should be improved and their solutions are represented.

피에조 구동형 잉크젯 노즐에서의 미세 액적 형성 특성 (On the Characteristics of the Droplet Formation from an Inkjet Nozzle Driven by a Piezoelectric Actuator)

  • 신평호;성재용;이석종
    • 한국가시화정보학회지
    • /
    • 제6권1호
    • /
    • pp.47-52
    • /
    • 2008
  • The present study has focused on the characteristics of droplet formation from an inkjet nozzle driven by a piezoelectric actuator. As an operating fluid, ethylene glycol was used and the physical properties of it such as viscosity, surface tension, contact angle and shear stress were measured. During the experiments, various temperatures and driving voltages are imposed on a capillary tube. These conditions result in a proper drive condition or an overdrive condition. In case of the proper drive condition, an image processing technique is applied to measure the diameter of a single free drop. As a result, the size of droplet is increased when the driving voltage is increased from 160 V to 190 V at 25$^{\circ}C$ In the overdrive condition where temperature or driving voltage becomes higher than the proper drive condition, satellites and the misdirected jets happen.