• 제목/요약/키워드: Contact tip

검색결과 290건 처리시간 0.026초

GMA용접 공정에서 콘택트팁 마모가 용접비드에 미치는 영향 (Effect of the Wear of Contact Tips on the Weld beads made by GMAW Process)

  • 고진현;김남훈;김환태;황용화
    • 한국산학기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.2019-2024
    • /
    • 2011
  • GMA용접 공정에서 콘택트팁의 마모가 용접비드에 미치는 영향에 대해서 연구하였다. 콘택트팁과 용접비드 사이의 연관성을 조사하기 위하여 초고속 카메라와 파형분석을 이용하여 용적이행을 관찰하였고, 저 배율의 카메라로 비드의 상태를 관찰하였다. 콘택드팁의 마모는 팁과 용접와이어 사이의 접촉 지점을 변화시켜 결과적으로 불규칙비드를 생성하였다. 이것은 마모된 콘택트팁이 용접시 용접저항의 변화를 초래하여 용접아크 불안정의 원인이 되기 때문이다.

Diagnosis in Beding Fatigue of Spur Gear Teeth

  • Sentoku, Hirofumi;Tokuda, Takashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.307-311
    • /
    • 1993
  • Research concerning gears included in rotating machines has been reported using the acoustic emission (AE) method, however, almost no research has been conducted using the AE method in regard to running gears in a bending fatigue processor spur gear teeth. Therefore, in this report, a power circulating-type gear testing machine was used and AE signals and crack length were measured in the bending fatigue process of case-hardened spur gear. Furthermore, the envelope of the AE signal was detected and various analysis were carried out in this data. In the course of the experiments, the following results were observed : the AE signal envelope consists mainly of contact frequency component and twice as many as this;two peaks of AE appear in each tooth contact by the tip corner contact ; as a result of the severe tip corner contact ; as a result of the severe tip corner contact with the sudden increase of crack length, AE signal becomes large.

  • PDF

GMA용접에서 용접와이어와 콘택트팁의 재질이 마모에 미치는 영향 (Effect of Welding wires on the Contact tip Wear during GMA Welding)

  • 김남훈;고진현;황용화
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2011년도 춘계학술논문집 2부
    • /
    • pp.683-686
    • /
    • 2011
  • The effect of welding material such as welding wires and materials for contact tip on the contact tip wear was investigated. Two types welding wires such as solid and flux cored wire and a variety of contact tips made of Cu-P, Cu-Cr(0.25%), Cu-Cr(1%) and Cu-Cr-Zr were employed for the comparison of wear resistance. It was found that the wear resistance of contact tips materials was Cu-Cr-Zr, Cu-Cr(1%), Cu-Cr(0.25%), Cu-P in order while the solid wire had a better wear resistance than flux cored wire.

  • PDF

가스메탈아크용접에서 콘택트팁의 마모에 미치는 용접재료의 영향 (Effect of wear of Contact Tips to Welding Consumable for Gas Metal Arc Welding)

  • 김인규
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.860-864
    • /
    • 2012
  • The contact tip is higher the wear of resistance and the longer life are demanded to GMA welding process. In this study, four different contact tips with three different compositions by two wires were evaluated their wear resistance by measuring in every one hour the area of enlarged hole at the exit side during actual wleding. Experimental results clearly showed that the Cr-containing tips strengthened by precipitation hardening have much better resistance to wear than those made by work hardening. In addition, flux cored wire is excellent abrasion resistance test results showed. Based on these results, the domestic industry, the life of the contact tip to know will be used as basic data.

주파수응답 분리방법을 이용한 비접촉식 AFM (Non-contact type AFM using frequency separation scheme)

  • 이성규;염우섭;박기환;송기봉;김준호;김은경;박강호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.375-378
    • /
    • 2002
  • In this paper, the frequency response separation scheme is proposed for high scanning speed and simple structure of non-contact type of AFM. A self-sensing cantilever is attached on the actuator for detect the atomic force between tip and the media surface. VCM or PZT are used for actuator. This paper presents the method to simplify the actuator structure and the performance of each actuator for non-contact type AFM. Based on the frequency response separation scheme, the only one actuator plays roles 1311owing low frequency surface and modulating self-sensing cantilever tip in contrast with convention non-contact type AFM. 10 ${\mu}{\textrm}{m}$ standard grid sample imaged to verify proposed scheme. This result shows the possibility simplifying the actuator structure and reducing cost of non-contact type AFM.

  • PDF

사각 및 원형 팁의 횡운동에 의한 물 메니스커스 형상변화에 관한 연구 (Study on a Shape Deformation of Water Meniscus for the Rectangular and Circular Tips Moving Horizontally)

  • 김상선;손성완;하만영;윤현식;김형락
    • 설비공학논문집
    • /
    • 제23권12호
    • /
    • pp.843-851
    • /
    • 2011
  • A two-dimensional immiscible water meniscus deformation phenomena on a moving tip in a channel has been investigated by using lattice Boltzmann method involving two-phase model. We studied the behavior of a water meniscus between the tip and a solid surface. The contact angles of the tip and a solid surface considered are in the range from $10^{\circ}$ to $170^{\circ}$. The velocity of the tip used in the study are 0.01, 0.001, and 0.0001. The shapes of tip considered are rectangular and circular. The behavior of water confined between the tip and a solid surface depends on the contact angles of the tip and a solid surface, and the tip velocity. When the tip is moving, we can observe the various behaviors of shear deformation of a water meniscus. As time goes on, the behavior of a water meniscus can be classified into three different patterns which are separated from the tip or adhered to the tip or sticked to a solid surface according to the contact angles and the tip velocity.

마찰력현미경을 이용한 나노스케일 마멸시험 시 다이아몬드 탐침으로의 MoS2 마멸입자 전이현상 (Material Transfer of MoS2 Wear Debris to Diamond Probe Tip in Nanoscale Wear test using Friction Force Microscopy)

  • 송현준;임형우;성권일;안효석
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.286-293
    • /
    • 2019
  • In friction and wear tests that use friction force microscopy (FFM), the wear debris transfer to the tip apex that changes tip radius is a crucial issue that influences the friction and wear performances of films and coatings with nanoscale thicknesses. In this study, FFM tests are performed for bilayer $MoS_2$ film to obtain a better understanding of how geometrical and chemical changes of tip apex influence the friction and wear properties of nanoscale molecular layers. The critical load can be estimated from the test results based on the clear distinction of the failure area. Scanning electron microscopy and energy-dispersive spectroscopy are employed to measure and observe the geometrical and chemical changes of the tip apex. Under normal loads lower than 1000 nN, the reuse of tips enhances the friction and wear performance at the tip-sample interface as the contact pair changes with the increase of tip radius. Therefore, the reduction of contact pressure due to the increase of tip radius by the transfer of $MoS_2$ or Mo-dominant wear debris and the change of contact pairs from diamond/$MoS_2$ to partial $MoS_2$ or Mo/$MoS_2$ can explain the critical load increase that results from tip reuse. We suggest that the wear debris transfer to the tip apex should be considered when used tips are repeatedly employed to identify the tribological properties of ultra-thin films using FFM.

An analysis on the factors responsible for relative position of interproximal papilla in healthy subjects

  • Kim, Joo-Hee;Cho, Yun-Jung;Lee, Ju-Youn;Kim, Sung-Jo;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • 제43권4호
    • /
    • pp.160-167
    • /
    • 2013
  • Purpose: This study examined the factors that can be associated with the appearance of the interproximal papilla. Methods: One hundred and forty-seven healthy interproximal papillae between the maxillary central incisors were examined. For each subject, a digital photograph and periapical radiograph of the interdental embrasure were taken using a 1-mm grid metal piece. The following parameters were recorded: the amount of recession of the interproximal papilla, contact point-bone crest distance, contact point-cemento-enamel junction (CEJ) distance, CEJ-bone crest distance, inter-radicular distance, tooth shape, embrasure space size, interproximal contact area, gingival biotype, papilla height, and papilla tip form. Results: The amount of recession of the interproximal papilla was associated with the following: 1) increase in contact point-bone crest, contact point-CEJ, and CEJ-bone crest distance; 2) increase in the inter-radicular distance; 3) triangular tooth shape; 4) decrease in the interproximal contact area length; 5) increase in the embrasure space size; and 6) flat papilla tip form. On the other hand, the amount of gingival recession was not associated with the gingival biotype or papilla height. In the triangular tooth shape, the contact point-bone crest distance and inter-radicular distance were longer, the interproximal contact area length was shorter, and the embrasure space size was larger. The papilla tip form became flatter with increasing inter-radicular distance and CEJ-bone crest distance. Conclusions: The relative position of the interproximal papilla in healthy subjects was associated with the multiple factors and each factor was related to the others. A triangular tooth shape carries a higher risk of recession of the interproximal papilla because the proximal contact point is positioned more incisally and the bone crest is positioned more apically. This results in an increase in recession of the interproximal papilla and flat papilla tip form.

표면에너지와 거칠기가 응착력에 미치는 영향 (The Effects of Surface Energy and Roughness on Adhesion Force)

  • 나종주;권식철;정용수
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1335-1347
    • /
    • 2006
  • Surface energies calculated from measured contact angles between several solutions and test samples, such as Si wafer, $Al_2O_3$, $SiO_2$, PTFE(Polytertrafluoroethylene), and DLC(Diamond Like Carbon) films, based on geometric mean method and Lewis acid base method. In order to relate roughness to adhesion force, surface roughness of test samples were scanned large area and small by AFM(Atomic Force Microscopy). Roughness was representative of test samples in large scan area and comparable with AFM tip radius in small scan area. Adhesion forces between AFM tip and test samples were matched well with order of roughness rather then surface energy. When AFM tips having different radius were used to measure adhesion force on DLCI film, sharper AFM tip was, smaller adhesion force was measured. Therefore contact area was more important factor to determine adhesion force.