• 제목/요약/키워드: Contact surface characteristics

검색결과 1,042건 처리시간 0.025초

레이저 클래딩 표면에 대한 젖음 특성에 관한 연구 (Study on Wetting Characteristics of Laser Cladding Surfaces)

  • 장무연;박영환;김태완
    • 한국기계가공학회지
    • /
    • 제18권11호
    • /
    • pp.35-40
    • /
    • 2019
  • Laser processing has been used in various fields. In this study, the feasibility of a hydrophobic surface was investigated through the laser cladding technique. A diode laser was used, and the output was set to 600-800 W. Seven different specimens were prepared with different cladding widths and spacings, and the contact angles for water droplets were evaluated. As a result, the contact angle of water droplets measured in the direction parallel to the cladding line was higher than that in the vertical direction. The wider the cladding width and the cladding space, the higher the contact angle in the parallel direction. It is thought that when a higher contact angle is formed in the parallel direction, more air can be placed in the valley between the cladding lines. In addition, for the hydrophobic coating effect, the contact angle of the coated cladding surface was increased by about $5-15^{\circ}$ as a whole compared to the coated smooth surface. It was confirmed that the wetting characteristics were improved through the cladding.

금속 앤드캡 구조에 따른 심벌 액츄에이터의 변위 특성 (Displacement Characteristics of Cymbal Actuator with Metal Endcap Structure)

  • 최성영;김진수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.844-846
    • /
    • 1998
  • In this study, Brass endcap with 2, 3, 5, and 7mm contact surface and 0.6, 0.9, 1.2, 1.5mm conical cavity depths was fabricated by the punch die while keeping the cavity diameter constant 9.25mm then displacement characteristics of the cymbal actuators with each of brass endcap thickness were measured under an applied voltage $60V_{max}$. Dispacement increased with increasing contact surface and resonant frequency decreased with increasing contact surface, cymbal actuator with 7mm contact surface and 1.5mm endcap cavity depth exhibits $35.89{\mu}m$ displacement and 18.8kHz resonant frequency, displacement increased with increasing endcap cavity depth while contact surface was kept constant at 3mm and Below a endcap thickness of 0.2mm, Differences in displacement between 1.2mm and 1.5mm cavity depth appeared at $0.18{\mu}m$. that is, displacement of cymbal actuator with 1.2mm over cavity depth saturated nearly.

  • PDF

웨이블릿 변환을 이용한 모직물의 표면섬유 분석과 주관적 감각 평가 (Analysis of Surface Fibers by Wavelet Transform and Subjective Evaluation of Wool Fabrics)

  • 김동옥;김은애;유신정
    • 감성과학
    • /
    • 제5권3호
    • /
    • pp.53-59
    • /
    • 2002
  • The surface fibers on the fabric is one of decisive factors which affects human sensory evaluation as well as heat and moisture transfer characteristics. In this study the length and distribution of surface fibers that are extruded from the fabric surface of the wool/wool blend fabrics (14 wool fabrics and 10 wool blend fabrics) and its contribution to subjective sensory evaluation were investigated. In order to quantify the length and distribution of surface fibers, image analysis and wavelet transform technique were introduced. Instant warm-cool feeling of touch, Q$\_$max/, and contact area were also measured and related to the quantified surface fibers. To figure out the effect of surface characteristics on sensory evaluation, human sensory responses to three adjectives which represent surface characteristics and warm-cool feeling of touch were obtained and analyzed. The relationship between the quantified surface fibers assessed by wavelet energy and both warm-cool reeling of touch, Qmax, and human sensory response were discussed.

  • PDF

접촉각이 유하액막 특성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effects of Contact Angle on a Falling Liquid Film)

  • 김경희;강병하;이대영
    • 설비공학논문집
    • /
    • 제18권11호
    • /
    • pp.867-873
    • /
    • 2006
  • Vertical falling liquid film is extensively used in heat and mass transfer processes of many applications, such as evaporative coolers, cooling towers, and absorption chillers. In such cases, it is required that the falling film spreads widely in the surface forming thin liquid film to enlarge contact surface. An addition of surface active agent to a falling liquid film or hydrophilic surface treatment affects the fluid physical properties of the film. Surfactant addition not only decreases contact angle between the liquid and solid surface but also changes the surface from hydrophobicity to hydrophilicity. In this study, the effects of contact angle on falling film characteristics over a vertical surface have been investigated experimentally. The contact angle is varied either by an addition of surfactant to the liquid or by hydrophilic surface treatment. It is found that the wetted area is increased and film thickness is decreased by the hydrophilic treatment as compared with those of other surfaces. With this hydrophilic treatment, the falling liquid film spreads out widely in the surface. As surfactant concentration is increased, wetted area is also increased and the film thickness is substantially decreased.

곡률 커플링 접촉각에 따른 접촉 강성 및 굽힘 강성해석 (Analysis of Contact Stiffness and Bending Stiffness according to Contact Angle of Curvic Coupling)

  • 유용훈;조용주;이동현;김영철
    • Tribology and Lubricants
    • /
    • 제34권1호
    • /
    • pp.23-32
    • /
    • 2018
  • Coupling is a mechanical component that transmits rotational force by connecting two shafts. Curvic coupling is widely used in high-performance systems because of its excellent power transmission efficiency and easy machining. However, coupling applications change dynamic behavior by reducing the stiffness of an entire system. Contact surface stiffness is an important parameter that determines the dynamic behavior of a system. In addition, the roughness profile of a contact surface is the most important parameter for obtaining contact stiffness. In this study, we theoretically establish the process of contact and bending stiffness analysis by considering the rough surface contact at Curvic coupling. Surface roughness parameters are obtained from Nayak's random process, and the normal contact stiffness of a contact surface is calculated using the Greenwood and Williamson model in the elastic region and the Jackson and Green model in the elastic-plastic region. The shape of the Curvic coupling contact surface is obtained by modeling a machined shape through an actual machining tool. Based on this modeling, we find the maximum number of gear teeth that can be machined according to the contact angle. Curvic coupling stiffness is calculated by considering the contact angle, and the calculation process is divided into stick and slip conditions. Based on this process, we investigate the stiffness characteristics according to the contact angle.

돌기 접촉 모델과 평균 유동 분석을 이용한 딤플 패턴의 윤활 특성에 관한 연구 (A study on lubrication Properties of a Dimple Pattern using an Average Flow Analysis with a Contact Model of Asperities)

  • 김미루;이승준;리량;이득우
    • 한국기계가공학회지
    • /
    • 제15권6호
    • /
    • pp.41-49
    • /
    • 2016
  • To evaluate lubrication properties by surface roughness under boundary and mixed lubrication, a new approach is suggested by both asperity flow and contact with stochastic characteristics. Many researchers already have studied the effect of surface roughness on flow. But, it has become important to research of the phenomenon of asperities contact in surfaces because the growth of asperities contact area under heavy load conditions. In this paper, flow factors in the average flow model derived by Patir and Cheng were used, and a multi-asperity contact model was included to calculate lubrication properties of a surface with a randomly generated rough surface. A numerical analysis using the average Reynolds equation with both the average flow model and the asperity contact model was conducted, and the results were compared with those from previous research. The results showed that the influence of asperities on lubrication and the friction coefficient changed rapidly on application of contact model.

풍력발전시스템의 주 베어링용 0.18C-3.5Ni-1.5Cr-0.2Mo강의 침탄 표면특성 (Characteristics of Carburized Surface Layers in 0.18C-3.5Ni-1.5Cr-0.2Mo Steels for Main Shaft Bearings of Wind Turbines)

  • 최병영;구윤식
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.226-231
    • /
    • 2012
  • Characteristics of carburized surface layers in 0.18C-3.5Ni-1.5Cr-0.2Mo steels for main shaft bearings of wind turbines have been analyzed and evaluated before and after rolling contact fatigue tests. Mixed microstructure consisting of retained austenite and tempered martensite has been formed with compressive residual stresses in the surface hardened layers of the specimens showing uniform hardness distribution with value about Hv700 after vacuum carburizing and tempering. It has been found on the raceway of the layers of the specimens after rolling contact fatigue tests that the amount of retained austenite decreased and compressive residual stresses increased, resulting from cyclic contact stresses applied during the tests. It has been also revealed that higher durability of the bearings can be obtained through controlling the amount of the retained austenite in the surface of the bearing steels to be lower in this study.

디스크 브레이크 마찰표면의 적열점에 관한 수치적 연구 (Numerical Study on the Hot Spots of Friction Surface in Disk Brakes)

  • 김청균;조승현
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1692-1696
    • /
    • 2004
  • This paper presents the thermally induced hot spot characteristics of rubbing surface in the friction pad disk brake. During the braking period, the rubbing surface with irregular asperities that are strongly engaged in rough surface, wear, and deformed surface due to a friction heating may produce an irregular distorted geometry of the disk surface. The tribological interactions between the disk and the pads are unstable if the contact stress is severe, in which the irregularity develops the contact pressure distribution, leading eventually to localized contact, high temperature and formation of hot spots. The computed results of contact spots that are simulated using a coupled thermal-mechanical analysis present sinusoidal distortions and localized extrusions of the disk surface, which are strongly related to a hot spot in the practical disk brake.

Survival of the Insulator under the electrical stress condition at cryogenic temperature

  • Baek, Seung-Myeong;Kim, Sang-Hyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.10-14
    • /
    • 2013
  • We have clearly investigated with respect to the survival of the insulator at cryogenic temperature under the electrical stress. The breakdown and voltage-time characteristics of turn-to-turn models for point contact geometry and surface contact geometry using copper multi wrapped with polyimide film for an HTS transformer were investigated under AC and impulse voltage at 77 K. Polyimide film (Kapton) 0.025 mm thick is used for multi wrapping of the electrode. As expected, the breakdown voltages for the surface contact geometry are lower than that of the point contact geometry, because the contact area of the surface contact geometry is lager than that of the point contact geometry. The time to breakdown t50 decreases as the applied voltage is increased, and the lifetime indices increase slightly as the number of layers is increased. The electric field amplitude at the position where breakdown occurs is about 80 % of the maximum electric field value. The relationship between survival probability and the electrical stress at cryogenic temperature was evident.

노면 표면거칠기 특성의 대표값 정량화와 타이어 접촉력 해석 기법에 대한 고찰 (Representative Evaluation of Topographical Characteristics of Road Surface for Tire Contact Force Analysis)

  • 서범교;성인하
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.303-308
    • /
    • 2017
  • Most automobile tire companies have not yet considered the geometric information of a road at the design stage of a tire because the topographical characterization of a road surface is very difficult owing to its vastness and randomness. A road surface shows variable surface roughness values according to magnification, and thus, the contact force between the road and tire significantly fluctuates with respect to the scale. In this study, we make an attempt to define a representative value for surface topographical information at multi-scale levels. To represent surface topography, we use a statistical method called power spectral density (PSD). We use the fast Fourier transform (FFT) and PSD to analyze the height profiles of a random surface. The FFT and PSD of a surface help in obtaining a fractal dimension, which is a representative value of surface topography at all length scales. We develop three surfaces with different fractal dimensions. We use finite element analysis (FEA) to observe the contact forces between a tire and the road surfaces with three different fractal dimensions. The results from FEA reveal that an increase in the fractal dimension decreases the contact length between the tire and road surfaces. On the contrary, the average contact force increases. This result indicates that designing and manufacturing a tire considering the fractal dimension of a road makes safe driving possible, owing to the improvement in service life and braking performance of the tire.