• 제목/요약/키워드: Contact modeling

검색결과 540건 처리시간 0.026초

EMTDC를 이용한 경부고속철도 고조파 전류 확대율 해석 (Analysis of the amplification of Harmonic Current Using EMTDC in Kyongbu High-Speed Railway)

  • 이한민;이장무
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1379-1381
    • /
    • 2004
  • This paper presents the AC electric railway system modeling using PSCAD/EMTDC program. This system model is composed of the scott-transformer the auto-transformer. the running rails. the protection wires, the feeders. the catenary and contact wires, etc. After obtaining the models of the fundamental elements describing the AC electric railway system and its behavior, we have analyzed and tested real traction power feeding system focused on the amplification of harmonic current to verify the proposed model. The simulation results from the proposed approach and the measurement data from the test are described in the paper.

  • PDF

3축 NC 가공을 위한 CL Z-map 모델링 방법의 비교 연구 (Comparative Study of CL Z-map Modeling for 3-Axis NC Machining)

  • 박정환;정연찬;최병규
    • 대한산업공학회지
    • /
    • 제26권4호
    • /
    • pp.325-335
    • /
    • 2000
  • Gouge-free tool-path generation is an important issue in mold & die machining and researches on cutter interference avoidance can be found in many articles. One of the various methods is construction of tool-offset surface of cutter-location (CL) surface on which the cutter-center point (CL-point) locates. Provided that the CL surface is represented in a suitable form, cutter-interference avoidance can be performed without the burden of computing CL data for every cutter-contact (CC) point. In the paper, various methods of constructing a CL surface in the z-map form are presented, where z-map is a special form of discrete nonparametric representation in which the height values at grid points on the xy-plane are stored as a 2D array z[i,j].

  • PDF

자동회귀-이동평균(ARMA) 모델에 의한 초음파 진동 절삭 공정의 해석 (An analysis of cutting process with ultrasonic vibration by ARMA model)

  • I.H. Choe;Kim, J.D.
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.85-94
    • /
    • 1994
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is, an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identify cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modeling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Date System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequency and damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

  • PDF

축과 베어링 변형을 고려한 헬리컬 기어의 전달오차 해석 (Transmission Error Analysis of Helical Gears in Consideration of Shaft and Bearing Deformation)

  • 박찬일;조도현
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2194-2200
    • /
    • 2002
  • Transmission error is highly related to gear noise. In order to predict the helical gear noise, transmission error analysis is needed. Up to now, the studies for the transmission error were conducted by the modeling of helical gears only. However, since helical gears are supported by the shaft and bearing, transmission error has the effects of the elements. In this study, the procedure to consider the shaft deformation with bearing stiffness for the transmission error analysis is proposed. To do so, the relationship between gear error and shaft deformation is analytically derived. Shaft deformation with bearing stiffness is analyzed by FEM. It is measured in the experimental test rig by the non-contact displacement sensors. Using the tooth error from tooth modification and the shaft deformation, the effects of shaft on the loaded transmission error are investigated.

Detection of Subsurface Defects in Metal Materials Using Infrared Thermography; Image Processing and Finite Element Modeling

  • Ranjit, Shrestha;Kim, Won Tae
    • 비파괴검사학회지
    • /
    • 제34권2호
    • /
    • pp.128-134
    • /
    • 2014
  • Infrared thermography is an emerging approach to non-contact, non-intrusive, and non-destructive inspection of various solid materials such as metals, composites, and semiconductors for industrial and research interests. In this study, data processing was applied to infrared thermography measurements to detect defects in metals that were widely used in industrial fields. When analyzing experimental data from infrared thermographic testing, raw images were often not appropriate. Thus, various data analysis methods were used at the pre-processing and processing levels in data processing programs for quantitative analysis of defect detection and characterization; these increased the infrared non-destructive testing capabilities since subtle defects signature became apparent. A 3D finite element simulation was performed to verify and analyze the data obtained from both the experiment and the image processing techniques.

Modeling of the Formation of Long Grooves in the Seabed by Grounded Ice Keels

  • Marchenko, Aleksey
    • Journal of Ship and Ocean Technology
    • /
    • 제7권4호
    • /
    • pp.1-15
    • /
    • 2003
  • The motion of passively floating body, whose keel can have a contact with seabed soil, is under the consideration. The body simulates ice ridge floating in shallow water. The force of seabed soil reaction applied to the grounded keel is estimated taking into account soil embankment near the grounded keel. Two-dimensional trajectories of body motion, the shape of the grooves in seabed and the height of soil embankment are calculated when the motion of the body is caused by semidiurnal $M_2$ tide. The influence of wave amplitude and bottom slope on the shapes of body trajectory and the grooves are analyzed.

복합재료 회전체의 휨진동에 관한 연구 (A Study on Bending Vibration of Laminated Rotating Disc)

  • 박승진;이승현
    • 도시과학
    • /
    • 제10권1호
    • /
    • pp.11-20
    • /
    • 2021
  • In this study, the vibration characteristics were theoretically analyzed by modeling a free isotropic rotating disk with an outer periphery with a fixed inner periphery, paying attention to disks used as storage devices for information devices, especially magnetic disks, magneto-optical disks, and compact disks in which the head and disk are non-contact. Iluminate with Composite materials represented by fiber-reinforced plastics (FRP) have high specific strength (strength/density) and specific stiffness (narrowness/density). It is used in the elements, and its use is rapidly expanding. Under this circumstance, the disk currently manufactured using an isotropic material made of various plastic materials such as aluminum or polycarbonate as a base material is an extremely anisotropic material made of a composite material, and the circumferential stiffness of the disk is made of reinforcing fibers in the circumferential direction. It is modeled as an anisotropic rotating disk with increased, and its influence on the vibration characteristics is revealed.

Prediction of the stability of badminton net via numerical and mathematical modeling

  • Ke Cui;Jiao Yuan;Liang Liu
    • Advances in concrete construction
    • /
    • 제15권2호
    • /
    • pp.127-135
    • /
    • 2023
  • The present paper develops application of TSDT and MCST to analysis of a FG cylindrical micro-shell. The present model may be used as a sensor applicable in badminton net to detect contact. The radial and axial displacement components are described based on TSDT for more accurate analysis. The effect of small scales is accounted based on MCST. The solution is presented for a SS boundary condition to account the influence of various important parameters. A comparative analysis is presented to examine the effect of order of employed shear deformation theory on the axial and radial displacements.

Recent Developments of Polymer Electrolyte Membrane Fuel Cell Design

  • Wonchan Hwang;Yung-Eun Sung
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.120-130
    • /
    • 2023
  • PEMFC has high potential for future development due to its high energy density, eco-friendliness, and high energy efficiency. When it becomes small, light and flexible, it can be competitive as an energy source for portable devices or flexible electronic devices. However, the use of hard and heavy materials for structural rigidity and uniform contact pressure transmission has become an obstacle to reducing the weight and flexibility of PEMFCs. This review intends to provide an example of the application of a new structure and material for lightweight and flexibility. As a lightweight PEMFC, a tubular design is presented and structural advantages through numerical modeling are explained. Manufacturing methods to realize the structural advantages and possibilities of tubular PEMFCs are discussed. In addition, the materials and manufacturing processes used to fabricate lightweight and flexible PEMFCs are described and factors affecting performance are analyzed. Strategies and structural improvements of light and flexible movements are discussed according to the component parts.

불확실 동적 환경에서 다각형 부품의 평행-턱 파지 계획 (Parallel-Jaw Grasp Planning of Polygonal Parts in Uncertain Dynamic Environments)

  • 한인환;조정호
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.126-135
    • /
    • 1997
  • A sensorless motion planner which succeeds in grasping a polygonal part firmly into a desired orientation has been developed through the dynamic analysis. The analytical results on the impact process with friction are used for modeling the contact motionduring the parallel-jaw grasp operation, which is com- posed of the pushing and the squeezing process. The developed planner succeeds in grasping a part into a specified orientation in the face of uncertainties of initial position and orientation of the part, motion direction of the finger, and the physical parameters such as the coefficients of friction and restitution. The motion planner has been fully implemented into a viable package on the computer system, and verified experimentally. The motion of parts is recorded using a high-speed video camera, and then compared to the results of the planner and the graphic simulation results that illustrate the simulated motion of the grasp operation.

  • PDF