• Title/Summary/Keyword: Contact modeling

Search Result 540, Processing Time 0.029 seconds

Evolution, Fields of Research, and Future of Chemical-Looping Combustion (CLC) process: A Review

  • Shahrestani, Masoumeh Moheb;Rahimi, Amir
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.299-308
    • /
    • 2014
  • This study presents a review on Chemical looping combustion (CLC) development, design aspects and modeling. The CLC is in fact an unmixed combustion based on the transfer of oxygen to the fuel by a solid oxygen carrier material avoiding the direct contact between air and fuel. The CLC process is considered as a very promising combustion technology for power plants and chemical industries due to its inherent capability of $CO_2$ capturing, which avoids extra separation costs of the of $CO_2$ from the rest of flue gases. This review covers the issues related to oxygen carrier materials. The modeling works are reviewed and different aspects of modeling are considered, as well. The main drawbacks and future research and prospects are remarked.

Kinematic Modeling and Inverse Dynamic Analysis of the IWR Biped Walking Robot (이족보행로봇 IWR의 기구학적 모델링과 역동역학 해석)

  • 김진석;박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.561-565
    • /
    • 2000
  • This paper deals with dynamic walking and inverse dynamic analysis of the IWR biped walking robot. The system has nine bodies of the multibody dynamics. and all of the .joints of them are made up of the revolute joints at first. The problem of redundant constraint in double support phase is solved by changing the type of the joints considering kinematic relation. To make sure of its dynamic walking, the movement of balancing weight is determined by which satisfies not only the condition of ZMP by applying the principle of D'Alembert but also the contact condition of the ground. The modeling of IWR and dynamic walking are realized using DADS.

  • PDF

Development of a Leaf Spring Moleling Method for Dynamic Analysis of a Mini-Bus (소형버스의 동역학 해석을 위한 판스프링 모델링기법 개발)

  • Park, T.W.;Yim, H.J.;Lee, G.H.;Park, C.J.;Jeong, I.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.1-6
    • /
    • 1998
  • A leaf spring plays an important role in a passenger bus. Since characteristic of a leaf spring has a hysteresis behaviour, modeling technique for a leaf spring is an important issue for passenger bus analysis. In this paper, modeling technique for a leaf spring is presented. First, non-linear FEM model of a leaf spring is constructed then it is used to make an approximated model to be used in dynamic analysis. The modeling procedure is ex-plained in step by step approach. Then, this model is applied to dynamic analysis of a mini-bus with flexible body and non-linear dynamic force element. The results are compared with test data.

  • PDF

A Study of the Characteristics of Thickness Distribution of Liquid Sheet Formed by Two Low Speed Impinging Jets (저속 충돌 제트로 생성되는 액막의 두께 분포 특성 연구)

  • Han, M.J.;Jeon, Y.U.;Seo, T.W.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • In this study, the thickness of the liquid sheet formed by two low speed impinging jets was measured by the direct contact method. The effects of jet velocity and liquid viscosity on the thickness were analyzed and the results were compared with theoretical modeling and optical thickness measurement results. The liquid film thickness decreased as the radius and circumferential angle increased. The jet velocity did not affect the liquid film thickness as predicted in theoretical modeling. In the theoretical modeling, there was no influence of the fluid properties on thickness, but in the case of low viscosity liquids, the thickness was predicted high, and it was well matched in high viscosity liquids. The direct measurement results showed no significant difference from the optical measurement results, thus confirming the reliability of the optical measurement method.

A Computational Modeling Reflecting Static and Dynamic Characteristics of LM Bearings for Machine Tools (공작기계 LM 베어링의 정동적 특성을 반영하는 전산 모델링)

  • Kim, Hye-Yeon;Jeong, Jong-Kyu;Won, Jong-Jin;Jeong, Jay-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1062-1069
    • /
    • 2012
  • This paper suggests a computational modeling to reflect static/dynamic characteristics of LM bearings. A theoretical study for modeling LM bearings is elucidated by using the Hertz contact theory, the Lagrange's equation of motion, normal mode analysis and a calculation of equivalent moment center. The complex geometry of LM bearings is replaced by a simplified model with eight springs only. The suggested model reflects static and dynamic characteristics of LM bearings without any consideration for the shape of the bed or stages on the LM bearings. The modal experimental results are compared to the simulation results with the suggested computational modeling. The difference between the experiments and simulation is calculated less than 8%.

Static Modeling of a Miniaturized Continuum Robot for Surgical Interventions and Displacement Analysis under Lateral External Loads (중재 시술 적용을 위한 소형 연속체 로봇의 정역학 모델링 및 외부 측면 하중에 의한 변위 분석)

  • Kim, Kiyoung;Woo, Hyunsoo;Cho, Jangho;Shin, Minki;Suh, Jungwook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.301-308
    • /
    • 2020
  • In this paper, we deal with the static modeling of a continuum robot that can perform surgical interventions. The proposed continuum robot is made of stainless steel wires and a multi lumen flexible tube using a thermoplastic elastomer. This continuum robot could be most severely deformed in physical contact with narrow external environments, when a lateral external force acts at the distal tip of the continuum robot. In order to predict the shape and displacement under the lateral external force loading, the forward kinematics, the statics modeling, the force-moment equilibrium equation, and the virtual work-energy method of the continuum robot are described. The deflection displacements were calculated using the virtual work-energy method, and the results were compared with the displacement obtained by the conventional cantilever beam theories. In conclusion, the proposed static modeling and the virtual work-energy method can be used in arrhythmia procedure simulations.

Modeling of the effect of current density and contact time on membrane fouling reduction in EC-MBR at different MLSS concentration (EC-MBR 공정의 MLSS, 전류밀도 및 접촉시간이 막 오염 감소에 미치는 영향 모델링)

  • Kim, Wan-Kyu;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • Electro-coagulation process has been gained an attention recently because it could overcome the membrane fouling problems in MBR(Membrane bio-reactor). Effect of the key operational parameters in electro-coagulation, current density(${\rho}_i$) and contact time(t) on membrane fouling reduction was investigated in this study. A kinetic model for ${\rho}_i$ and t required to reduce the membrane fouling was suggested under different MLSS(mixed liquor suspended solids) concentration. Total 48 batch type experiments of electro-coagulations under different sets of current densities(2.5, 6, 12 and $24A/m^2$), contact times(0, 2, 6 and 12 hr) and MLSS concentration(4500, 6500 and 8500mg/L) were carried out. After each electro-coagulation under different conditions, a series of membrane filtration was performed to get information on how much of membrane fouling was reduced. The membrane fouling decreased as the ${\rho}_i$ and t increased but as MLSS decreased. Total fouling resistances, Rt (=Rc+Rf) were calculated and compared to those of the controls (Ro), which were obtained from the experiments without electro-coagulation. A kinetic approach for the fouling reduction rate (Rt/Ro) was carried out and three equations under different MLSS concentration were suggested: i) ${\rho}_i^{0.39}t=3.5$ (MLSS=4500 mg/L), ii) ${\rho}_i^{0.46}t=7.0$ (MLSS=6500 mg/L), iii) ${\rho}_i^{0.74}t=10.5$ (MLSS=8500 mg/L). These equations state that the product of ${\rho}_i$ and t needed to reduce the fouling in certain amounts (in this study, 10% of fouling reduction) is always constant.

Modeling for the strap combined footings Part II: Mathematical model for design

  • Yanez-Palafox, Juan Antonio;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.109-121
    • /
    • 2019
  • This paper presents the second part of the modeling for the strap combined footings, this part shows a mathematical model for design of strap combined footings subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing for one and/or two property lines of sides opposite restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The first part shows the optimal contact surface for the strap combined footings to obtain the most economical dimensioning on the soil (optimal area). The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. A numerical example is presented to obtain the design of strap combined footings subject to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems and it can also be used for rectangular and T-shaped combined footings.

The Effect of Employees' Social Regard on Service Loyalty: Comparative Approach of Beauty Services and Fast-food Services in Service Settings (종업원의 고객에 대한 배려행동이 서비스 충성도에 미치는 영향: 미용실서비스와 패스트푸드서비스의 비교적 접근)

  • Sung, Yun-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.1
    • /
    • pp.409-422
    • /
    • 2014
  • This paper examined the influence of employees' social regard toward the customers, such as, overall service quality, service satisfaction, and service loyalty. The paper proves that the high contact beauty services and the low contact fast-food services have different customer satisfaction level depending on the employees' social regards. A survey study was conducted to collect the data with the actual service purchasers at domestic beauty services and fast-food services. Analysis of structural equation modeling with Amos 18.0 was performed to test the research hypothesis. The results of the study are as follows: First, social regard has positive influences on service quality, service satisfaction, and service loyalty. Second, Social regard has more effect on service satisfaction in a high contact beauty services than in a low contact fast-food services. This paper contribute to identify the effects of employees' social regard on service satisfaction, by comparing the effects on service satisfaction between high and low contact services.

Collision Efficiency Estimation in the DAF Contact Zone using Computational Fluid Dynamics (전산유체 기법을 이용한 용존공기부상법에서의 접촉도 조건변화에 따른 충돌효율평가)

  • Kim, Sung-Hoon;Yoo, Je-Seon;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.201-207
    • /
    • 2004
  • Dissolved air flotation (DAF) is a solid-liquid separation process that uses fine rising bubbles to remove particles in water. Most of particle-bubble collision occurs in the DAF contact zone. This initial contact considered by the researchers to play a important role for DAF performance. It is hard to make up conceptual model through simple mass balance for estimating collision efficiency in the contact zone because coupled behavior of the solid-liquid-gas phase in DAF system is 90 complicate. In this study, 2-phase(gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. For the modeling of turbulent 2-phase flow in the reactor, the standard $k-{\varepsilon}$ mode I(liquid phase) and zero-equation(gas phase) were used in CFD code because it is widely accepted and the coefficients for the model are well established. Particle-bubble collision efficiency was calculated using predicted turbulent energy dissipation rate and gas volume fraction. As the result of this study, the authors concluded that bubble size and recycle ratio play important role for flow pattern change in the reactor. Predicted collision efficiency using CFD showed good agreement with measured removal efficiency in the contact zone. Also, simulation results indicated that collision efficiency at 15% recycle ratio is higher than that of 10% and showed increasing tendency of the collision efficiency according to the decrease of the bubble size.