• Title/Summary/Keyword: Contact isolation

Search Result 99, Processing Time 0.027 seconds

A Study on Personal Information Protection amid the COVID-19 Pandemic

  • Kim, Min Woo;Kim, Il Hwan;Kim, Jaehyoun;Ha, Oh Jeong;Chang, Jinsook;Park, Sangdon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4062-4080
    • /
    • 2022
  • COVID-19, a highly infectious disease, has affected the globe tremendously since its outbreak during late 2019 in Wuhan, China. In order to respond to the pandemic, governments around the world introduced a variety of public health measures including contact-tracing, a method to identify individuals who may have come into contact with a confirmed COVID-19 patient, which usually leads to quarantine of certain individuals. Like many other governments, the South Korean health authorities adopted public health measures using latest data technologies. Key data technology-based quarantine measures include:(1) Electronic Entry Log; (2) Self-check App; and (3) COVID-19 Wristband, and heavily relied on individual's personal information for contact-tracing and self-isolation. In fact, during the early stages of the pandemic, South Korea's strategy proved to be highly effective in containing the spread of coronavirus while other countries suffered significantly from the surge of COVID-19 patients. However, while the South Korean COVID-19 policy was hailed as a success, it must be noted that the government achieved this by collecting and processing a wide range of personal information. In collecting and processing personal information, the data minimum principle - one of the widely recognized common data principles between different data protection laws - should be applied. Public health measures have no exceptions, and it is even more crucial when government activities are involved. In this study, we provide an analysis of how the governments around the world reacted to the COVID-19 pandemic and evaluate whether the South Korean government's digital quarantine measures ensured the protection of its citizen's right to privacy.

A Study on the Shared Space in the Residential Part of Nursing Homes for the Elderly (노인요양시설 주거부분 공유공간에 관한 연구)

  • Son, Soo-Jin;Lee, Teuk-Koo
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.5 no.9
    • /
    • pp.37-45
    • /
    • 1999
  • Most of elderly residents who live in nursing home for a long time have been suffering from chronic sickness. Therefore, residential part should be the place to recover social relationship, to get over isolation and to be able to make communication through contact of personal activities. The purpose of this study is to offer the guideline of planning and scale of the shared place which makes better housing environment of the elderly. also, the character of the elderly and element of environments appropriate for the frail elderly people were study.

  • PDF

Nanocomposites for microelectronic packaging

  • Lee, Sang-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.99.1-99.1
    • /
    • 2016
  • The materials for an electronic packaging provide diverse important functions including electrical contact to transfer signals from devices, isolation to protect from the environment and a path for heat conduction away from the devices. The packaging materials composed of metals, ceramics, polymers or combinations are crucial to the device operating properly and reliably. The demand of effective charge and heat transfer continuous to be challenge for the high-speed and high-power devices. Nanomaterials including graphene, carbon nanotube and boron nitride, have been designed for the purpose of exploiting the high thermal, electrical and mechanical properties by combining in the matrix of metal or polymer. In addition, considering the inherent electrical and surface properties of graphene, it is expected that graphene would be a good candidate for the surface layer of a template in the electroforming process. In this talk, I will present recent our on-going works in nanomaterials for microelectronic packaging: 1) porous graphene/Cu for heat dissipations, 2) carbon-metal composites for interconnects and 3) nanomaterials-epoxy composites as a thermal interface materials for electronic packaging.

  • PDF

Isolation of Cadmium Ion-resistant Bacteria and Resitance to Various Heavy Metals (카드봄 내성균의 분리와 각종 중금속에 대한 저항성의 연구)

  • Yeeh, Yeehn;Lee, Jong-Kun
    • Korean Journal of Microbiology
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 1979
  • Cadimium ion-resistant microorganism was isolated from the sludge of wastewater. The physiological, morphological and other cultural data showed that this strain belonged to Citrobacter freudii. A clearcut distinction of growth among nutrient broth, typtic soy broth and synthetic medium was demonstrated. The resistant cells showed only slight mutagenic action. During the growth of bacterial population in resting state, the organisms reduced the initial level of resistance to cadmium ions when they were not kept in contact with cadmium ions in bacteral multiplication. And cadmium ion-resistant and cadmium ion-sensitive strain were found to show equal, lower or higher sensitivity to other heave metals.

  • PDF

Fabrication and analysis of 400DPI LED array (400DPI LED array 제작 및 평가)

  • 박광범;김인회;문현찬;신상모;이태호;주동욱
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.30-31
    • /
    • 2000
  • 400DPI LED array was fabricated by using reactive ion etching(RIE) method. Material of fabricated LED array was used the GaP for green light emitting and had a homojunction structure. Each cells of emitting area in the LED array were defined with RIE etching for electrical isolation between cells. Electrodes were formed on each cells to emit independently. Ohmic contact resistivity was approximate 1.2$\times$10$^{5}$ $\Omega$/$\textrm{cm}^2$ and 1.26$\times$10$^{5}$ $\Omega$/$\textrm{cm}^2$ using isothermal annealing at 38$0^{\circ}C$ and 43$0^{\circ}C$. Emitting intensity of each etmitting cell was 1.65 cd/$m^2$.

  • PDF

Low Pull-in Voltage MEMS Switches for Wireless Applications (저전압구동 무선통신용 MEMS 스위치)

  • Shim, Dong-Ha;Lee, Moon-Chul;Lee, Eun-Sung;Park, Sun-Hee;Kim, Young-Il;Song, In-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1969-1971
    • /
    • 2002
  • This paper presents the design and performance of low pull-in voltage MEMS switches for commercial cellular/PCS applications. The switches have all-metal (3 ${\mu}m$ thick Au) movable plates over CPW(Coplanar Waveguide) transmission line. The stress gradient in a movable plate is considered in mechanical design to obtain an accurate pull-in voltage. Series metal-to-metal contact switches are fabricated and evaluated. Those switches exhibit the low loss(<0.2 dB @1.9 GHz) with good isolation(55 dB @1.9 GHz).

  • PDF

Repulsive & Attractive Type Magnetic Levitation for Mechanical Isolation of the Planar Stage Mover (평면 스테이지의 이동자 접촉 배제를 위한 반발식/흡인식 자기 부상)

  • 정광석;이상헌;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.76-83
    • /
    • 2003
  • To cope with stringent performance targets requested in many fields spanning the whole range of industry, the driver is necessary to realize large dynamic range as well as nano resolution, manipulate the mover orientation without additional driver, and be suitable for clean environment. As one of those purposes, authors have developed the planar precision stages with the integrated operating principle of levitation and propel. In this paper, we discuss potential of magnetic suspension technology by comparing various features of non-contact planar stages, that is, repulsive type of surface actuator and attractive type of surface actuator.

New GGNMOS I/O Cell Array for Improved Electrical Overstress Robustness

  • Pang, Yon-Sup;Kim, Youngju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.65-70
    • /
    • 2013
  • A 0.18-${\mu}m$ 3.3 V grounded-gate NMOS (GGNMOS) I/O cell array for timing controller (TCON) application is proposed for improving electrical overstress (EOS) robustness. The improved cell array consists of 20 GGNMOS, 4 inserted well taps, 2 end-well taps and shallow trench isolation (STI). Technology computer-aided design (TCAD) simulation results show that the inserted well taps and extended drain contact gate spacing (DCGS) is effective in preventing EOS failure, e.g. local burnout. Thermodynamic models for device simulation enable us to obtain lattice temperature distributions inside the cells. The peak value of the maximum lattice temperature in the improved GGNMOS cell array is lower than that in a conventional GGNMOS cell array. The inserted well taps also improve the uniformity of turn-on of GGNMOS cells. EOS test results show the validity of the simulation results on improvement of EOS robustness of the new GGNMOS I/O cell array.

The Electrical Properties of Self-Aligned High Speed Bipolar Transistor (자기정렬된 고속 바이폴라 트랜지스터의 전기적 특성)

  • 구용서;최상훈;구진근;이진효
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.786-793
    • /
    • 1987
  • This paper describes the design and fabrication of the polysilicon selfaligned bipolar transistor with 1.6\ulcorner epitaxy and SWAMI isolation technologies. This transistor has two levels of polysilicon. Also emitter and adjacent edge of polysilicon base contact of this PSA device are defined by the same mask, and emitter feature size is 2x4 \ulcorner. DC characteristic of the fabricated transistor was evaluated and analyzed for the SPICE input parameters. The minimum propagation delay time per gate of 330 ps at 1mW was obtained with 41 stage CML ring oscillator.

  • PDF

Synthetic Membranes in Biotechnology: Realities and Possibilities (생물공학에서의 합성막 : 현실과 가능성)

  • Belfort, Georges
    • Membrane Journal
    • /
    • v.2 no.2
    • /
    • pp.91-103
    • /
    • 1992
  • Synthetic membrane processes are being increasingly integrated into existing reaction, isolation, and recovery schemes for the production of valuable biological molecules. In many cases they are replacing traditional unit processes. The properties of membrane systems which are most often exploited for both upstream and downstream processing and their permselectivity, high surface area per unit volume, are their potential for controlling the level of contact and/or mixing between two separate phases. Advances in both membrane materials and module design and operation have led to better control of concentration polarization and membrane fouling. After presenting some recent advances in membrane materials and fluid mechanics, we demonstrate how membranes have been integrated into cellular and enzymatic reaction schemes. This is followed by a review of established and emerging synergism between biological processes and synthetic membranes.

  • PDF