• Title/Summary/Keyword: Contact intensity

Search Result 279, Processing Time 0.031 seconds

Pile Contact Depth Effects in Rubbed Polyimide(PI) Films

  • Kim, Gi-Jeong;Gwon, Hyeok-Min;Lee, Sang-Mun;Lee, Cheol-Gu;Gwak, Mu-Seon;Kim, Bong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.398-398
    • /
    • 2010
  • To determine the molecular directionality of PI chains depending on rubbing condition, we measured the angle resolved near edge X-ray absorption fine structure (NEXAFS) spectra at C K-edge of the rubbed PI films. Twisted nematic mode PI (PI-TN) and in plane switching mode PI (PI-IPS) were introduced to examine the effect of rubbing conditions on the chain directionality. The average tilt angle a of the PI molecules was estimated through the measured intensity change of $C=C\;{\pi}^*$ in NEXAFS C K-edge spectrum by controlling the stage speed and the pile contact depth. After rubbing, the irregular molecular direction changed to a regular direction with a molecular tilt angle of $51.2^{\circ}$ for PI-TN and $49.6^{\circ}$ for PI-IPS at the rubbing condition of the roll speed of 1000 rpm, stage speed of 50 mm/sec, and file contact depth of 0.3 mm. The molecular tilt angle $\alpha$ was linearly decreased in the PI-TN and PI-IPS samples with increasing depth of the pile contact.

  • PDF

Dislocation in Semi-infinite Half Plane Subject to Adhesive Complete Contact with Square Wedge: Part I - Derivation of Corrective Functions (직각 쐐기와 응착접촉 하는 반무한 평판 내 전위: 제1부 - 보정 함수 유도)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.73-83
    • /
    • 2022
  • This paper is concerned with an analysis of a surface edge crack emanated from a sharp contact edge. For a geometrical model, a square wedge is in contact with a half plane whose materials are identical, and a surface perpendicular crack initiated from the contact edge exists in the half plane. To analyze this crack problem, it is necessary to evaluate the stress field on the crack line which are induced by the contact tractions and pseudo-dislocations that simulate the crack, using the Bueckner principle. In this Part I, the stress filed in the half plane due to the contact is re-summarized using an asymptotic analysis method, which has been published before by the author. Further focus is given to the stress field in the half plane due to a pseudo-edge dislocation, which will provide a stress solution due to a crack (i.e. a continuous distribution of edge dislocations) later, using the Burgers vector. Essential result of the present work is the corrective functions which modify the stress field of an infinite domain to apply for the present one which has free surfaces, and thus the infiniteness is no longer preserved. Numerical methods and coordinate normalization are used, which was developed for an edge crack problem, using the Gauss-Jacobi integration formula. The convergence of the corrective functions are investigated here. Features of the corrective functions and their application to a crack problem will be given in Part II.

Customer-Contact Employee Support and Service Recovery Efforts: The Mediating Role of Job Burnout and Customer Orientation

  • Moon, Younhee
    • Asia Marketing Journal
    • /
    • v.20 no.3
    • /
    • pp.83-103
    • /
    • 2018
  • The purpose of this research is to investigate the effect of customer-contact employees support on service recovery efforts. Service companies should try to prevent the service failure situation from occurring, but it is realistic that the service failure occurs due to the characteristics of the service. Service recovery efforts of service providers are important because effective responses to service failures can enhance customer satisfaction despite service failures. Social support for customer-contact employees needs to improve service recovery efforts. Specifically, this study focuses on the mediation roles of job burnout and customer orientation in relationship between social support for customer-contact employees and service recovery efforts. Social exchange theory was used as the theoretical underpinning of the research model. Based on reciprocity principle, this paper suppose that support for customer-contact employees and service recovery effort are a kind of social exchange relationship. Social supports for customer-contact employees are categorized into internal and external organization. Internal organization is POS(perceived organizational support) and external organization is customer support. The research model was tested with the data gathered from the flight attendants whose emotional labor intensity was relatively high and the service failure frequently occurred. As a result of analysis, social supports for customer-contact employees classified into organizational support, supervisor support, and customer support are found to have differential impacts on job burnout and customer orientation. It has been found that job burnout of service providers is negatively affecting service recovery efforts. On the other hand, customer orientation of service providers has a positive influence on service recovery efforts. Based on the results of the analysis, we provide practical implications for effective service recovery efforts in service failure situations, and suggest the theoretical implications to explain the process of service recovery effort. Finally, limitations of the study and directions for future research are suggested.

Application of L Integral to Interface Crack Problems (계면균열 문제에 대한 L적분의 응용)

  • 박재학;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.34-42
    • /
    • 1986
  • An interface of a circular arc formed by two isotropic, homogeneous elastic materials is investigated. It is shown that L integral satisfies the conservation law for the interface if it is perfectly bonded, in frictionless contact or separated such as in a crack with the origin of the coordinate system being located at the center of the circular arc. The property of path independence of the L integral is applied to an interfacial crack problem, to obtain the stress intensity factors, where the interfacial crack is located along the arc of the circular inclusion embedded in infinite matrix. It is assumed here that the contact zone exist as in the model proposed by Comninou, thus removing the overlapping of the materials along the interface. Another example is shown for case of a circular interfacial crack in the matrix of finite size, where the stress intensity factors are determined by computing a value of the L integral numerically along the path far from the crack tip.

A Study on the Bend Deformation Cause Analysis of CAE Applied Wire to Board Connectors (압접 커넥터 CAE 적용 휨 변형 원인 분석에 관한 연구)

  • Jeon, Yong-Jun;Shin, Kwang-Ho;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.19-25
    • /
    • 2016
  • Connectors are very important components that transmit electric signals to different parts. It must maintain intensity of the connector to prevent defects from impact and maintain contact to transmit electric signals. Most of the external parts of the connector, which act as the main framework, are formed by injection molding. However, bend deformation occurs for injection molded products due to the residual stress left inside the product after product molding. When the bend deformation is large, it does not come into complete contact when being assembled with other parts, which leads to connector contact intensity not being properly maintained. In result, the main role of the connector, which is to transmit electric signals, cannot be performed. In order to address this problem, this study conducted bend deformation cause analysis through bend deformation analysis to predict and prevent bend deformation of housings and wafers, which are injection molded products of pressure welded connectors that are normally applied in compact mobile and display products. Bend deformation analysis was carried out by checking the charging time, pressure distribution and temperature distribution through wire to board connector wafer and housing injection molding analysis. Based on the results of the bend deformation analysis results, the cause of the bend deformation was analyzed through deformation resulting from disproportional cooling, deformation resulting from disproportional contraction, and deformation resulting from ingredient orientation. In result, it was judged that the effects for bend deformation were biggest due to disproportional contraction for both the pressure welded connector wafer and housing.

Effects of the One side Hydrophilicity for Nylon/PU Water Repellent Blended Fabric Treated with Low Temperature Plasma Treatment (저온 플라즈마 처리한 Nylon/PU 혼방발수직물의 편면친수효과)

  • Ma, Jae Hyuk;Son, Kyoung Tai;Koo, Kang
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.461-466
    • /
    • 2013
  • Synthetic fiber materials were developed due the desire of consumers for high-quality, high-performance and comfort. A high functionality of synthetic fiber can be obtained through surface treatment that can improve hydrophilic properties, color depth after dyeing and adhesion properties. These advantages create added-value. Hydrophobic properties are an important feature to create added-value (such as hydrophilic properties). One side processing is a method of imparting to contrary function on the front and rear side. In this study, fluorine-coated Nylon/PU blended fabric was treated on only one side with a low-temperature plasma treatment; subsequently, the contact angles decreased by increasing the time and intensity of the plasma treatment. The contact angle of the untreated surface and the treated surface was different. It a showed a difference in the properties of both surfaces. Tensile strength and stiffness decreased by increasing the time and intensity of the plasma treatment. However, plasma treatment did not significantly change the tensile strength and stiffness on both surfaces of the fabric. SEM photographs showed the surface of fluorine-coated fabric and the etching surface by using plasma treatment on the fabric. Plasma treatment was confirmed not to affect the physical properties of the fabric.

End Stress Analysis of Overlaid Concrete Structures Subjected to Thermally Transient Condition by Rainfall (강우에 따른 콘크리트 덧씌우기 보수체의 단부 온도응력 해석)

  • 윤우헌
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.145-151
    • /
    • 1998
  • The vertical tensile stress, ${\sigma}_y$, in the contact zone between the overlay (mortar layer) and substratum (base concrete) can be the main cause of the failure phenomenon of overlaid concrete structures. The development of tensile stress, ${\sigma}_y$, due to external rainy condition was analytically investigated using finite element method. Rainfall intensity $(n_R\;=\;1/a,\;t_R\;=\;10min,\;60min)$, thickness of overlay (do=1,2,4,10 cm) and overlay material (CM,ECM,EM) were the main variables in the analyses. An equation was suggested with which the development of vertical tensile stress, ${\sigma}_y$, in the rainy condition could be determined. Using this equation, it is possible to select proper material properties and overlay thicknesses to prevent failure in the contact zone due to thermally transient condition caused by rainfall.

One-Plate Type Hybrid Plasma Discharge Device with Heating Element (히터 일체형 하이브리드 단판형 플라즈마 방전소자)

  • Choi, Woo Jin;Choi, Eun Hye;Sung, Hyeong Seok;Kwon, Jin Gu;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.320-326
    • /
    • 2019
  • Recently, the application of atmospheric plasma technology in air filtration is increasing. Sterilization by an atmospheric plasma device is very effective. However, ozone gas, which is generated during atmospheric plasma formation, poses a hazard to human health. To reduce the ozone gas during plasma discharge, we fabricated a one-plate hybrid plasma discharge device with a heating element, which can decompose ozone gas effectively by a simple heating action. In this study, we evaluated the plasma discharge characteristics and ozone concentrations with various Ar flow rates and temperatures. With increasing Ar gas flow rate, the ozone concentration and spectrum intensity increased till an Ar gas flow rate of 60 sccm, and decreased thereafter. When discharged in high temperature, the ozone concentration and spectrum intensity decreased. Further, to evaluate the state of the treated surface under various plasma discharge and heating conditions, we measured the variation in the contact angles on the surface. Regardless of the temperature, the contact angle increased with increasing discharge voltage. However, the contact angle increased when discharged at high temperature.

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

Critical Angle Analysis of Elliptical Corner Cracks in Mechanical Joints by Weight Function Method and Finite Element Analysis (가중함수법과 유한요소해석에 의한 기계적 체결부에 존재하는 타원형 모서리균열의 임계 경사각 해석)

  • Heo, Sung-Pil;Yang, Won-Ho;Ko, Myung-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • There is the high possibility of crack initiation from mechanical joints, which are widely used in aircraft fuselages, due to the development of stress concentration and contact pressure. In this paper, the mixed-mode stress intensity factors at the surface and deepest points of an inclined quarter elliptical corner crack in mechanical joints are analyzed by the weight function method. The coefficients included in the weight function are obtained by finite element analyses for reference loadings. Critical angle at which mode I stress intensity factor becomes maximum is determined by analyzing the variation of stress intensity factors along incline angle of crack and the effects of the amount of clearance and crack depth on the critical angle are investigated.