DOI QR코드

DOI QR Code

One-Plate Type Hybrid Plasma Discharge Device with Heating Element

히터 일체형 하이브리드 단판형 플라즈마 방전소자

  • Choi, Woo Jin (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Choi, Eun Hye (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Sung, Hyeong Seok (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Kwon, Jin Gu (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Lee, Seong Eui (Department of Advanced Materials Engineering, Korea Polytechnic University)
  • 최우진 (한국산업기술대학교 신소재공학과) ;
  • 최은혜 (한국산업기술대학교 신소재공학과) ;
  • 성형석 (한국산업기술대학교 신소재공학과) ;
  • 권진구 (한국산업기술대학교 신소재공학과) ;
  • 이성의 (한국산업기술대학교 신소재공학과)
  • Received : 2019.04.09
  • Accepted : 2019.05.09
  • Published : 2019.07.01

Abstract

Recently, the application of atmospheric plasma technology in air filtration is increasing. Sterilization by an atmospheric plasma device is very effective. However, ozone gas, which is generated during atmospheric plasma formation, poses a hazard to human health. To reduce the ozone gas during plasma discharge, we fabricated a one-plate hybrid plasma discharge device with a heating element, which can decompose ozone gas effectively by a simple heating action. In this study, we evaluated the plasma discharge characteristics and ozone concentrations with various Ar flow rates and temperatures. With increasing Ar gas flow rate, the ozone concentration and spectrum intensity increased till an Ar gas flow rate of 60 sccm, and decreased thereafter. When discharged in high temperature, the ozone concentration and spectrum intensity decreased. Further, to evaluate the state of the treated surface under various plasma discharge and heating conditions, we measured the variation in the contact angles on the surface. Regardless of the temperature, the contact angle increased with increasing discharge voltage. However, the contact angle increased when discharged at high temperature.

Keywords

JJJRCC_2019_v32n4_320_f0001.png 이미지

Fig. 1. Discharge device formation flow.

JJJRCC_2019_v32n4_320_f0002.png 이미지

Fig. 2. Schematic structure of discharge device.

JJJRCC_2019_v32n4_320_f0003.png 이미지

Fig. 3. Schematic structure of device plasma discharge characteristic and ozone concentration evaluation.

JJJRCC_2019_v32n4_320_f0004.png 이미지

Fig. 6. Variation of contact angle with voltage and temperature.

JJJRCC_2019_v32n4_320_f0005.png 이미지

Fig. 4. (a) Ozone concentration with time and flow rate of Ar gas, (b) UV spectrum with flow rate of Ar gas, (c) ozone spectrum with flow rate of Ar flow, and (d) Ar spectrum with flow rate of Ar gas.

JJJRCC_2019_v32n4_320_f0006.png 이미지

Fig. 5. (a) Ozone concentration with time and flow rate of Ar gas at 100℃, (b) ozone concentration with flow rate of Ar gas and temperature, (c) UV spectrum with temperature at 100 sccm of Ar gas flow rate, and (d) ozone spectrum with temperature at 100 sccm of Ar gas flow rate.

Table 1. Discharge condition of device.

JJJRCC_2019_v32n4_320_t0001.png 이미지

Table 2. Condition of plasma treatment.

JJJRCC_2019_v32n4_320_t0002.png 이미지

Table 3. Photo of droplet shape with discharge voltage and heat.

JJJRCC_2019_v32n4_320_t0003.png 이미지

References

  1. I. H. Won, S. K. Kang, J. Y. Sim, and J. K. Lee, IEEE Trans. Plasma Sci., 42, 2788 (2014). [DOI: https://doi.org/10.1109/tps.2014.2320266]
  2. K. H. Song, Y. S. Ko, and W. C. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 9, 1427 (2014). [DOI: https://doi.org/10.13067/jkiecs.2014.9.12.1427]
  3. H. H. Son and W. G. Lee, Appl. Chem. Eng., 22, 261 (2011).
  4. W. Y. Lee, D. J. Jin, Y. J. Kim, G. H. Han, H. K. Yu, H. C. Kim, S. W. Jin, J. H. Koo, D. Y. Kim, and G. Cho, J. Korean Vac. Soc., 22, 111 (2013). [DOI: https://doi.org/10.5757/JKVS.2013.22.3.111]
  5. J. S. Kim, H. Jee, and H. W. Seo, New Phys.: Sae Mulli, 67, 1399 (2017). [DOI: https://doi.org/10.3938/NPSM.67.1399]
  6. S. B. Han, S. S. Park, J. H. Kim, and J. Y. Park, J. Korean Inst. Illum. Electr. Install. Eng., 27, 45 (2013). [DOI: https://doi.org/10.5207/JIEIE.2013.27.7.045]
  7. S. J. Lee and J. T. Lee, Inst. Electron. Info. Eng., 2016, 920 (2016).
  8. B. J. Chun, S. K. Lee, M. F. Rahman, D. H. Lee, W. Z. Park, and K. S. Lee, J. Elec. Eng. Technol., 1999, 2004 (1999).
  9. S. W. Hwang, H. J. Lee, and H. J. Lee, J. Korean Vac. Soc., 20, 258 (2011). [DOI: https://doi.org/10.5757/JKVS.2011.20.4.258]
  10. C. J. Lee, S. K. Lee, G. H. Park, and B. M. Kim, Trans. Korean Soc. Mech. Eng. A, 32, 354 (2008). [DOI:https://doi.org/10.3795/KSME-A.2008.32.4.354]
  11. P. G. Reyes, E. F. Mendez, D. Osorio-Gonzalez, F. Castillo, and H. Martinez, Phys. Status Solidi C, 5, 907 (2008). [DOI:https://doi.org/10.1002/pssc.200778306]
  12. S. J. Cho, C. K. Jung, S. S. Kim, and J. H. Boo, Appl. Sci. Converg. Technol., 19, 22 (2010). [DOI: https://doi.org/10.5757/JKVS.2010.19.1.022]