• 제목/요약/키워드: Contact heat transfer coefficient

검색결과 61건 처리시간 0.022초

Experimental study on the condensation of sonic steam in the underwater environment

  • Meng, Zhaoming;Zhang, Wei;Liu, Jiazhi;Yan, Ruihao;Shen, Geyu
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.987-995
    • /
    • 2019
  • Steam jet condensation is of great importance to pressure suppression containment and automatic depressurization system in nuclear power plant. In this paper, the condensation processes of sonic steam jet in a quiescent subcooled pool are recorded and analyzed, more precise understanding are got in direct contact condensation. Experiments are conducted at atmospheric pressure, and the steam is injected into the subcooled water pool through a vertical nozzle with the inner diameter of 10 mm, water temperature in the range of $25-60^{\circ}C$ and mass velocity in the range of $320-1080kg/m^2s$. Richardson number is calculated based on the conservation of momentum for single water jet and its values are in the range of 0.16-2.67. There is no thermal stratification observed in the water pool. Four condensation regimes are observed, including condensation oscillation, contraction, expansion-contraction and double expansion-contraction shapes. A condensation regime map is present based on steam mass velocity and water temperature. The dimensionless steam plume length increase with the increase of steam mass velocity and water temperature, and its values are in the range of 1.4-9.0. Condensation heat transfer coefficient decreases with the increase of steam mass velocity and water temperature, and its values are in the range of $1.44-3.65MW/m^2^{\circ}C$. New more accurate semi-empirical correlations for prediction of the dimensionless steam plume length and condensation heat transfer coefficient are proposed respectively. The discrepancy of predicted plume length is within ${\pm}10%$ for present experimental results and ${\pm}25%$ for previous researchers. The discrepancy of predicted condensation heat transfer coefficient is with ${\pm}12%$.

채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구 (An Experimental study on heat transfer of a falling liquid film in air channel flow)

  • 오동은;강병하;김석현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2291-2296
    • /
    • 2007
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate form the heated surface is increased as the air flow rate is increased.

  • PDF

채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer of a Falling Liquid Film in Air Channel Flow)

  • 오동은;강병하;김석현;이대영
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.335-341
    • /
    • 2008
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate from the heated surface is increased as the air flow rate is increased.

An Experimental Investigation of Direct Condensation of Steam Jet in Subcooled Water

  • Kim, Yeon-Sik;Chung, Moon-Ki;Park, Jee-Won;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.45-57
    • /
    • 1997
  • The direct contact condensation phenomenon, which occurs when steam is injected into the subcooled water, has been experimentally investigated. Two plume shapes in the stable condensation regime are found to be conical and ellipsoidal shapes depending on the steam mass flux and the liquid subcooling. Divergent plumes, however, are found when the subcooling is relatively small. The measured expansion ratio of the maximum plume diameter to the injector inner diameter ranges from 1.0 to 2.3. By means of fitting a large amount of measured data, an empirical correlation is obtained to predict the steam plume length as a function of a dimensionless steam mass flux and a driving potential for the condensation process. The average heat transfer coefficient of direct contact condensation has been found to be in the range 1.0~3.5 ㎿/$m^2$.$^{\circ}C$. Present results show that the magnitude of the average condensation heat transfer coefficient depends mainly on the steam mass fin By using dynamic pressure measurements and visual observations, six regimes of direct contact condensation have been identified on a condensation regime map, which are chugging, transition region from chugging to condensation oscillation, condensation oscillation, bubbling condensation oscillation, stable condensation, and interfacial oscillation condensation. The regime boundaries are quite clearly distinguishable except the boundaries of bubbling condensation oscillation and interfacial oscillation condensation.

  • PDF

고온의 기포접촉에 의한 에탄올 회수공정에 관한 연구 (Study on the Ethanol Recovery Process using Dircet Contact Heat Exchange)

  • 이원영;여상도;최용희
    • 한국식품과학회지
    • /
    • 제27권2호
    • /
    • pp.176-180
    • /
    • 1995
  • 고온의 기포를 액상에 분산시켜 형성되는 기-액상간의 온도구배로 인한 열 및 물질전달 방법인 고온기포접촉법을 도입하여 수용액으로부터 에탄올의 분리능력을 검토하고 회수율을 살펴보았다. 기포의 높은 분산속도는 액상내에서 jet regime을 형성하였으며 온도와 유속에 따라 air-water stripping coefficient는 각각 $5{\sim}10,\;1{\sim}1.5$배 증가하였다. 액상과 기포의 온도차가 클수록 stripping coefficient의 값이 높았으며 유속보다는 온도가 분리능력에 더 큰 영향을 미치는 것으로 나타났다. 회수율은 고온일 때와 유속이 클수록 증가해 $150^{\circ}C$, 84.88m/min 일때 80%의 회수율을 나타내었다. 고온기포접촉법은 stripping coefficient가 에탄올의 초기농도에 큰 영향을 받지 않으므로, 알코올 발효공정에서 배양액의 농도가 5% 이상 높아지면 알코올 생성균주의 생장장해를 일으켜 알코올 생산 수율이 떨어지는 생산물 저해작용을 줄이고 알코올을 회수하는 공정으로 응용될 수 있다.

  • PDF

물유동층 열교환기의 열회수성능 연구 (A Study on the Heat Recovery Performance of Water Fludized-Bed Heat Exchanger)

  • 김한덕;박상일;이세균
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.690-696
    • /
    • 2003
  • This paper presents the heat recovery performance of water fluidized-bed heat exchanger. Temperature and humidity ratio of waste gas are considered as important parameters in this study. Therefore, the heat recovery rate through water fluidized-bed heat exchanger for exhaust gases with various temperatures and humidity ratios can be estimated from the results of this study. Mass flow ratio (the ratio of mass flow rate of water to that of gas) and temperature of inlet water are also considered as important operating variables. Increase of heat recovery rate can be obtained through either high mass flow ratio or low temperature of inlet water with resultant low recovered temperature. The heat recovery performance with the mass flow ratio of about up to 10 has been investigated. The effect of number of stages of water fluidized-bed on the heat recovery performance has been also examined in this study.

Effect of gamma irradiation on the critical heat flux of nano-coated surfaces

  • Rahimian, A.;Kazeminejad, H.;Khalafi, H.;Akhavan, A.;Mirvakili, M.
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2353-2360
    • /
    • 2020
  • An anodic electrophoretic deposition (EPD) technique is used to create a uniform TiO2 thin film coating on boiling thin steel plates (1.1 mm by 90 mm). All of the effective parameters except time of the EPD method are kept constant. To investigate the effect of gamma irradiation on the critical heat flux (CHF), the test specimens were irradiated in a gamma cell to different doses ranging from 100 to 300 kGy, and then SEM and BET analysis were performed. For each coated specimen, the contact angle and capillary length were measured. The specimens were then tested in a boiling pool for CHF and boiling heat transfer coefficient. It was observed that irradiation significantly decreases the maximum pore diameter while it increases the porosity, pore surface area and pore volume. These surface modifications due to gamma irradiation increased the CHF of the nano-coated surfaces compared to that of the unirradiated surfaces. The heat transfer coefficient (HTC) of the nano-coated surfaces irradiated at 300 kGy increased from 83 to 160 kW/(㎡ K) at 885 kW/㎡ wall heat flux by 100%. The CHF of the irradiated (300 kGy) and unirradiated surfaces are 2035 kW/㎡ and 1583 kW/㎡, respectively, an increase of nearly 31%.

Measurement of temperature profile using the infrared thermal camera in turbulent stratified liquid flow for estimation of condensation heat transfer coefficients

  • Choi, Sung-Won;No, Hee-Cheon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1999년도 춘계학술발표회요약집
    • /
    • pp.107-107
    • /
    • 1999
  • Direct-contact condensation experiments of atmospheric steam and steam/air mixture on subcooled water flowing co-currently in a rectangular channel are carried out uszng an infrared thermal camera system to develop a temperature measurement method. The inframetrics Model 760 Infrared Thermal Imaging Radiometer is used for the measurement of the temperature field of the water film for various flow conditions. The local heat transfer coefficient is calculated using the bulk temperature gradient along the (low direction. It is also found that the temperature profiles can be used to understand the interfacial condensation heat transfer characteristics according to the flow conditions such as noncondensable gas effects, inclination effect, and flow rates.

  • PDF

물-증기 동방향 성층이상 유동에서의 응축 열전달 계수 (Condensation Heat Transfer Coefficient in Horizontal Stratified Cocurrent Flow of Steam and Cold Water)

  • 김효정
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.618-624
    • /
    • 1986
  • 본 논문에서는 최근까지 제시된 동방향 성층이상유동의 직접접촉응축열전달계 수에 대한 여러가지 상관관계식들을 검토하고 실험결과와 비교하여 적절한 관계식을 제시하고자 한다.

Al6061 열간단조시 계면열전달계수에 관한 연구 (A study on interface heat transfer coefficient in hot forging of Al6061 by experiments and FE analysis)

  • 권진욱;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.219-222
    • /
    • 2005
  • The temperature difference between die and workpiece has frequently caused various surface defects. The non-homogeneous temperature distribution of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperatures were mainly affected by the coefficient of thermal contact conductance. The precise coefficient is necessary to predict accurately the temperature changes of die and workpiece. The experiment is preformed to measure the temperature distribution of die and workpiece in closed die upsetting. And then, the coefficient is classified into function of pressure and confirmed by the comparison between experiments and FE analyses using the other model. The FE analysis to predict the temperature distribution is performed by commercial software $DEFORM-3D^{TM}$. However, it might be impossible to measure directly the temperature distribution of forged part. Therefore, the comparisons between measured temperature and predicted values are performed with the hardness of Al6061-forged part.

  • PDF