• Title/Summary/Keyword: Contact diameter

Search Result 494, Processing Time 0.028 seconds

Model on the Contact Lens Movement from Eye-lid Blinking (순목 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Daesoo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.145-159
    • /
    • 2004
  • A mathematical model and its computer solution program were proposed to analyze the motion of contact lenses which are being subject to lid-blinking. The equation was derived by incorporating an acceleration induced lid's force exerting on the contact lens, the viscous damping resistance in the tear layer beneath the lens and the sliding frictional force between the lid and the contact lens surface into the formulation of differential equation describing the vibration. The model predicts the time-dependent displacement from the equilibrium postion during/after the blinking. During the blinking, as the time for the completion of one cycle of blinking decreases the off-the-equilibrium displacement of contact lens increases while the decrease of diameter in the contact cause the opposite effect. It is found that lid pressure exerting on the lens cause an insignificant lens displacement from the equilibrium position. After blinking the frequency of damped oscillation of contact lens decreases as the diameter of lens increases, due to the incresed surface while the reduced blinking time does not cause a significant frequency change. This is because that driving force for the contact lens movement posterior to blinking is the capillary-induced force not the lid force.

  • PDF

Displacement Characteristics of Cymbal Actuator with Metal Endcap Structure (금속 앤드캡 구조에 따른 심벌 액츄에이터의 변위 특성)

  • Choi, Sung-Young;Kim, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.844-846
    • /
    • 1998
  • In this study, Brass endcap with 2, 3, 5, and 7mm contact surface and 0.6, 0.9, 1.2, 1.5mm conical cavity depths was fabricated by the punch die while keeping the cavity diameter constant 9.25mm then displacement characteristics of the cymbal actuators with each of brass endcap thickness were measured under an applied voltage $60V_{max}$. Dispacement increased with increasing contact surface and resonant frequency decreased with increasing contact surface, cymbal actuator with 7mm contact surface and 1.5mm endcap cavity depth exhibits $35.89{\mu}m$ displacement and 18.8kHz resonant frequency, displacement increased with increasing endcap cavity depth while contact surface was kept constant at 3mm and Below a endcap thickness of 0.2mm, Differences in displacement between 1.2mm and 1.5mm cavity depth appeared at $0.18{\mu}m$. that is, displacement of cymbal actuator with 1.2mm over cavity depth saturated nearly.

  • PDF

Study on the Frictional Characteristics of Micro-particles for Tribological Application (미세입자의 트라이볼로지적 응용을 위한 마찰특성 고찰)

  • Sung, In-Ha;Han, Hung-Gu;Kong, Ho-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • Interests in micro/nano-particles have been greatly increasing due to their wide applications in various fields such as environmental and medical sciences as well as engineering. In order to obtain a fundamental understanding of the tribological characteristics at particle-surface contact interface, frictional behaviors according to load/pressure and materials were obtained by using atomic force microscope(AFM) cantilevers with different stiffnesses and tips. Lateral contact stiffnesses were observed in various tip-surface contact situations. Experimental results show that stick-slip friction behavior occurs even when the colloidal probes with a particle of a few micrometers in diameter, which have a relatively large contact area and lack a well-shaped apex, were used. This indicates that atomic stick-slip friction may be a more common phenomenon than it is currently thought to be. Also, experimental results were investigated by considering the competition between the stiffness of the interatomic potential across the interface and the elastic stiffnesses of the contacting materials and the force sensor itself.

Implementation of Non-contact Plant Growth Measurement System based on USN Technologies (USN 기술 기반의 비접촉 식물 생장 측정 시스템 구현)

  • Suk, Jin-Weon;Ryoo, In-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.137-145
    • /
    • 2010
  • This paper is proposed non-contact plant growth measurement system using infrared sensor based on USN(Ubiquitous Sensor Network) technologies. The proposed system has used noncontact sensors to reduce any potential damage when it measures the growth of the plant. In this system, plant growth parameters such as diameter, cross-sectional area and thickening form are measured in real-time non-contact method. The measured data are transmitted to remote server by using sensor network technologies, stored and analyzed at the server, and the analyzed data are finally provided for users. In this paper, the proposed plant growth measurement system has been designed and implemented using non-contact infrared sensor based measurement methods and devices, and its performances have been verified by actual measurement experiments at the fields.

Development of Measurement System for Contact Angle and Evaporation Characteristics of a Micro-droplet on a Substrate (미소 액적의 접촉각 및 건조 특성 측정 시스템 개발)

  • Kwon, Kye-Si;An, Seung-Hyun;Jang, Min Hyuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.414-420
    • /
    • 2013
  • We developed inkjet based measurement system for micro-droplet behavior on a substrate. By using the inkjet dispenser, a droplet, which is as small as few pico-liter in volume, can be jetted and the amount can be controlled. After jetting, the droplet image on the substrate is acquired from side view camera. Then, droplet profile is extracted to measure droplet volume, contact angle and evaporation characteristics. Also top view image of the droplet is acquired for better understanding of droplet shape. The previous contact angle measurement method has limitations since it mainly measures the ratio of height and contact diameter of droplet on a substrate. Unlike previous measurement system, our proposed method has advantages because various behavior of droplet on substrate can be effectively analyzed by extracting the droplet profile.

A Study on Rolling Contact Behaviors of a Flat Rough Surface with a Smooth Ball (구와 평면간의 구름접촉거동에 관한 연구)

  • 김경모;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.554-570
    • /
    • 1990
  • he rolling contact behaviors between a smooth ball and a flat rough surface under dynamic load are intricately affected by many factors, such as the diameter of a ball, normal load and the roughness of a flat surface etc. Accordingly, the experimental study is done to find them on the base of elastic hysteresis loss as theoretical approach is very difficult. The experimental apparatus composed of damped-free vibration system is used. This paper investigates the damping characteristics on the rolling contact area through rolling friction force and logarithmic decrement versus displacement obtained in accordance with the variations of those factors, and presents a new experimental method to find out contact width using the relations of logarithmic decrement and rolling friction force with displacement.

A Study on a Finite Element Analysis Method Using Simplified Ball Models of Wind Turbine Ball Bearings (풍력발전기용 볼 베어링의 단순화 볼 모델을 이용한 해석기법 연구)

  • Seung-Woo Kim;Jung-Woo Song;Jun-Pyo Hong;Jong-Hoon Kang
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.21-28
    • /
    • 2023
  • This study focuses on the analysis of slewing ball bearings in wind turbines. Slewing bearings have an outer diameter of several meters, and hundreds of balls are in contact with the raceway. Due to the large number of balls and raceway contact conditions, it is difficult to accurately analyze contact stresses using general analysis techniques. To analyze the contact stress of a slewing ball bearing, the sub-modeling method is applied, which is a technique that first analyzes the displacement of the entire model and then analyzes the local stress at the point of maximum displacement. In order to reduce the displacement analysis time of the entire ball bearing, the technique of replacing the ball with a nonlinear spring is adopted. The analytical agreement of the simplified model was evaluated by comparing it with a solid mesh model of the ball for three models with different spring attachment methods. It was found that for the condition where a large turnover moment is applied to the bearing, increasing the number of spring elements gives the closest results to modeling the ball with a solid mesh.

Experimental Study of Laser Assisted Microvascular Anastomosis(LAMA) Using the Nd:YAG Contact Laser (Laser를 이용한 새로운 미세혈관 문합술의 실험적 연구)

  • Cho, Jin-Hwan;Lim, Jae-Ho;Park, Seung-Ha;Kim, Woo-Kyung
    • Archives of Reconstructive Microsurgery
    • /
    • v.2 no.1
    • /
    • pp.82-92
    • /
    • 1993
  • A comparative study was undertaken to evaluate the contact Neo-dymium : yttrium aluminum garnet(Nd:YAG) laser system for vascular anastomosis of small caliber blood vessels(diameter 0.5-1.2 mm) in the animal model. In this study 40 femoral arteries and 40 femoral veins of Sprague-Dawley rats were anastomosed by contact laser assisted microvascular anastomosis(LAMA) utilizing 3 stay sutures which were placed 120 degrees apart and the intervals welded with contact Nd:YAG laser unit, conventionally sutured anastomosis(CSA) served as controls. The time needed for vascular anastomosis, patency rate(immediate postoperative, postoperative 2nd day, postoperative 1 week, postoperative 4 weeks), gross and microscopic evaluations were compared to conventional microsurgical suture technique. The results are as follows: 1. Postoperative patency rate was 82.5% for femoral artery and 75% for femoral vein by contact LAMA technique compared to 90% and 75% by CSA technique at postoperative 4 weeks. 2. Less time-consumed for arterial anastomosis by 6 minutes 23 seconds and venous anastomosis by 8 minutes 55 seconds with contact LAMA technique compared to CSA technique. 3. Grossly almost complete healing had taken place by postoperative 1 week by contact LAMA technique. 4. Aneurysm formation was 5% for femoral artery and 15% for femoral vein by contact LAMA technique compared to 5% and 10% respectively by CSA technique. 5. Microscopically, re-endothelization was complete by postoperative 7th day by contact LAMA technique. There was less medial hypertrophy and hyperplasia and also less inflammatory response compared to CSA.

  • PDF

Modal analysis of perforated rectangular plates in contact with water

  • Jeong, Kyeong-Hoon;Ahn, Byung-Ki;Lee, Seong-Cheol
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.189-200
    • /
    • 2001
  • This paper presents an experimental modal analysis of perforated rectangular plates in air or in contact with water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 2.125, 2.500, 3.000 and 3.750. The plate was clamped along the plate edges by a number of bolts and nuts. The natural frequencies of the perforated plates in air were obtained by the analytical method based on the relation between the reference kinetic and maximum potential energies and compared with the experimental results. Good agreement between the results was found for the natural frequencies of the perforated plates in air. Additionally, it was empirically found that the natural frequencies of the perforated plate in air increase with an increase of P/D, on the other hand, the natural frequencies of the perforated plate in contact with water decrease with an increase of P/D.

A Study on the Vibration Analysis of Multi-components Damaged Ball Bearing under Radial Load (반경하중을 받는 결함 볼베어링의 진동해석에 관한 연구)

  • 김영주;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.29-42
    • /
    • 1988
  • With the Hertzian contact theory, it is possible to determine the bearing load distributing pattern among the balls and rollers and also variations of the load-displacement relationships for rolling elements contacting raceways according to bearing clearance, load distribution, contact forces and dimensions of bearing components (i.e diameter of raceway and rolling elements), etc. In this paper the calculation theories of contact load and normal approach between two raceways under radial load are reviewed, and compared these calculation results with those of experimental results. A new calculation theory for elastic displacement of outer-race of ball bearing under radial load is developed by authors by application of energy method, which is independent on the effects of roughness, bending or eccentricity of bearing with driving shaft, and is effective in measuring the location of its defect.

  • PDF