• Title/Summary/Keyword: Contact Process

Search Result 2,785, Processing Time 0.031 seconds

Treatment of Contact between Roll/Roll and Roll/Strip for Rolling Process Simulation (압연공정해석을 위한 판과 롤의 접촉 경계면 처리)

  • 김태효;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.156-159
    • /
    • 2003
  • Surface normal vector and surface velocity are very important parameters to simulate rolling processes precisely. In this study, Local displacement functions are constructed for each node on the contact surface and parameters are found by the least square fitting of displacement on the neighbor nodes. Deformation gradient tensor is calculated from the displacement function and surface normal vector and velocity also can be derived. Flat rolling simulation model is presented on the basis of the suggested contact scheme. Series of rolling process simulation are carried out and the results are compared with the experiments.

  • PDF

Binder Wrap Analysis considering Gravity, Contact and Friction (접촉과 마찰을 고려한 바인더 랩의 유한 요소 해석)

  • 유동진;이종민;전기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.87-95
    • /
    • 1996
  • The stamping process consists of two stages : First, the blank is held by the blank holder and then it is further formed into the die cavity by punch stroke. In actual stamping process, the accurate prediction of binder wrap is an indispensable step in sheet metal forming analysis because the initial plastic buckling induced by improper die design is directly related with fatal defect at the final stage. In the present work, an approach including the gravity effect of blank material and proper consideration of contact and friction is proposed. Computations are carried out for some actual auto-body parts using 3D FEM code to investigate the validity of the proposed methodology. Comparisons with experimental results show that the suggested scheme can be effectively applied to the precise prediction of binder wrap for arbitrarily curved die faces in which gravity and contact effect must be taken into account.

Nanomachining on Single Crystal Silicon Wafer by Ultra Short Pulse Electrochemical Oxidation based on Non-contact Scanning Probe Lithography (비접촉 SPL기법을 이용한 단결정 실리콘 웨이퍼 표면의 극초단파 펄스 전기화학 초정밀 나노가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Kim, Tack-Hyun;Park, Jeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.395-400
    • /
    • 2011
  • Scanning Probe Lithography is a method to localized oxidation on single crystal silicon wafer surface. This study demonstrates nanometer scale non contact lithography process on (100) silicon (p-type) wafer surface using AFM(Atomic force microscope) apparatuses and pulse controlling methods. AFM-based experimental apparatuses are connected the DC pulse generator that supplies ultra short pulses between conductive tip and single crystal silicon wafer surface maintaining constant humidity during processes. Then ultra short pulse durations are controlled according to various experimental conditions. Non contact lithography of using ultra short pulse induces electrochemical reaction between micro-scale tip and silicon wafer surface. Various growths of oxides can be created by ultra short pulse non contact lithography modification according to various pulse durations and applied constant humidity environment.

Fabrication and Electrical Properties of Highly Organized Single-Walled Carbon Nanotube Networks for Electronic Device Applications

  • Kim, Young Lae
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.66-69
    • /
    • 2017
  • In this study, the fabrication and electrical properties of aligned single-walled carbon nanotube (SWCNT) networks using a template-based fluidic assembly process are presented. This complementary metal-oxide-semiconductor (CMOS)-friendly process allows the formation of highly aligned lateral nanotube networks on $SiO_2/Si$ substrates, which can be easily integrated onto existing Si-based structures. To measure outstanding electrical properties of organized SWCNT devices, interfacial contact resistance between organized SWCNT devices and Ti/Au electrodes needs to be improved since conventional lithographic cleaning procedures are insufficient for the complete removal of lithographic residues in SWCNT network devices. Using optimized purification steps and controlled developing time, the interfacial contact resistance between SWCNTs and contact electrodes of Ti/Au is reached below 2% of the overall resistance in two-probe SWCNT platform. This structure can withstand current densities ${\sim}10^7A{\cdot}cm^{-2}$, equivalent to copper at similar dimensions. Also failure current density improves with decreasing network width.

Chip on Glass Technologies for High-Performance LCD Applications

  • Kim, Young-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.203-215
    • /
    • 2002
  • Using eutectic In-Ag and Bi-Sn solder materials, we developed the COG technique having a minimum pitch of 50 ${\mu}{\textrm}{m}$. The maximum temperature in this process is $160^{\circ}C$. We fabricated spherical and uniform solder bumps by controlling the microstructure of Bi-Sn solder bumps. The contact resistances of Bi-Sn solder joints were 19 m$\Omega$ at $80{\mu}{\textrm}{m}$ pitch and 60 m$\Omega$ at $80{\mu}{\textrm}{m}$ pitch, respectively. These values are much lower than the contact resistance of the conventional ACF bonding. The contact resistances of the solder joint are almost the same before and after the underfill process. The contact resistance of the underfilled Bi-Sn solder joint did not change even after reliability test.

  • PDF

Modeling of the Centerless Infeed (Plunge) Grinding Process

  • Kim, Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1026-1035
    • /
    • 2003
  • A computer simulation method for investigating the form generation mechanism in the centerless infeed (plunge) grinding process is described. For a 3-D simulation model of form generation, contact points are assumed to be on least squares contact lines at the grinding wheel, regulating wheel, and work-rest blade. Using force and deflection analyses, the validity of this assumption is shown. Based on the 2-D simulation model developed in the previous work and the least squares contact line assumption, a 3-D model is presented. To validate this model, simulation results were compared with the experimental works. The experiments and computer simulations were carried out using three types of cylindrical workpiece shapes with varying flat length. The experimental results agree well with the simulation. It can be seen that the effect of flat end propagated to the opposite end through workpiece reorientation.

A Magnetorheological Polishing System (자기유변유체를 이용한 연마가공 시스템)

  • 김영민;신영재;이응숙;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.324-328
    • /
    • 2003
  • The Magnetoeheological fluid has the properties that it's viscosity has dramastic changed under some magnetic fields therefore, Magnetorhlogical fluids has been used for micro polishing of the micro part( for example, a aspherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorhological finshing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fulid ate brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate f3r glass polishing lends support the validity of the approach.

  • PDF

The Principle of Magnetorheological finishing for a micro part (자성 유체를 이용한 미세연마가공의 원리)

  • 김동우;신영재;이응숙;조명우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1840-1843
    • /
    • 2003
  • The Magnetorheological fluid has the properties that its viscosity has drastic changed under some magnetic fields therefore, Magnetorheological fluids has been used for micro polishing of the micro part( for example, a aspherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorheological finishing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fluid ate brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate for glass polishing lends support the validity of the approach.

  • PDF

Analysis and research on teeth thermodynamic coupling contact of gear transmission system

  • Wang, Xigui;Wang, Yongmei;Zhao, Xuezeng;Li, Xinglin
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.237-249
    • /
    • 2015
  • In the gear meshing process, gear temperature field concerns the meshing surface friction, the friction heat depends on the contact pressure, the contact pressure is affected by the elastic deformation of gears and the temperature field caused by the thermal deformation, so the temperature field, stress field and displacement field should be mutual coupling. It is necessary to consider in meshing gear pair in the operation process of thermodynamic coupling contact stress (TCCS) and thermodynamic coupling deformation (TCD), and based on thermodynamic coupling analysis (TCA) of gear teeth deformation.

The Development of Polishing System a Magnetorheological Fluids (자기유변유체를 이용한 연마가공 시스템의 개발)

  • 신영재;김동우;이응숙;김경웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.46-52
    • /
    • 2004
  • The Magnetorheological fluid has the properties that its viscosity has drastic changed under some magnetic fields therefore, Magnetorheological fluids has been used fur micro polishing of the micro part(for example, a spherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorheological finishing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fluid are brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate for glass polishing lends support the validity of the approach.