• Title/Summary/Keyword: Contact Problems

Search Result 844, Processing Time 0.024 seconds

Analysis of Static and Dynamic Frictional Contact of Deformable Bodies Including Large Rotations of the Contact Surfaces

  • Lee, Kisu
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1276-1286
    • /
    • 2002
  • The numerical techniques are presented to solve the static and dynamic contact problems of deformable bodies having large rotations of the contact surfaces. The contact conditions on the possible contact surfaces are enforced by using the contact error vector, and an iterative scheme similar to augmented Lagrange multiplier method is employed to reduce the contact error vector monotonically. For dynamic contact problems using implicit time integration, a contact error vector is also defined by combining the displacement, velocity, and acceleration on the contact surface. The suggested iterative technique is implemented to ABAQUS by using the UEL subroutine UEL. In this work, after the computing procedures to solve the frictional contact problems are explained, the numerical examples are presented to compare the present solutions with those obtained by ABAQUS.

Searching Algorithm for Finite Element Analysis of 2-D Contact Problems (2차원 접촉문제의 유한요소 해석을 위한 탐색알고리즘)

  • 장동환;최호준;고병두;조승한;황병복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.148-158
    • /
    • 2003
  • In this paper, efficient and accurate contact search algorithm is proposed for the contact problems by the finite element method. A slave node and a maser contact segment is defined using the side of a finite element on the contact surface. The specific goal is to develop techniques of reducing the nonsmoothness of the contact interactions arising from the finite element discretization of the contact surface. Contact detection is accomplished by monitoring the territory of the slave nodes throughout the calculation for possible penetration of a master surface. To establish the validity of the proposed algorithm, some different process and geometries examples were simulated. Efforts are focused on the error rate that is based on the penetrated area through the simulations fur large deformation with contact surface between deformable bodies. A proposed algorithm offers improvements in contact detection from the simulation results.

The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch

  • Yaylaci, Murat;Abanoz, Merve;Yaylaci, Ecren Uzun;Olmez, Hasan;Sekban, Dursun Murat;Birinci, Ahmet
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.661-672
    • /
    • 2022
  • The solution of contact problems is extremely important as we encounter many situations involving such problems in our daily lives. One of the most important parameters effective in solving contact problems is the materials of the parts in contact. While it is relatively easy to solve the contact mechanics of the systems created with traditional materials with a homogeneous microstructure and mechanical distribution, it may be more difficult to solve the contact problem of new generation materials that do not show a homogeneous distribution. As a result of this situation, it is seen that studies on contact problems of materials that do not exhibit such a homogeneous internal structure and mechanical properties are extremely limited in the literature. In this context, in this study, analytical and numerical analyzes of a contact problem created using functionally graded materials were carried out and the results were evaluated mutually. It has been decided that the contact areas and contact pressures acquired from numerical method are reasonably appropriate with the results obtained from the analytical method.

Multibody Elastic Contact Analysis by Modified Linear Programming (수정된 선형계획법을 이용한 다물체 탄성 접촉 문제 해석)

  • 이대희;전범준;최동훈;임장근;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 1989
  • A general and efficient algorithm is proposed for the analyses of multibody elastic contact problems. It is presumed that there exists negligible friction between the bodies. It utilizes a simplex type algorithm with a modified entry rule and incoporates finite element method to obtain flexibility matrices for arbitrarily shaped bodies. The multibody contact problem of a vehicle support on an elastic foundation is considered first to show the effictiveness of the suggested algorithm. Its solution is compared favorably with the existing solution. A contact problem among inner race, rollers and outer race is analyzed and the distribution of load, rigid body movements and contact pressure distributions are obtained. The trend of contact characteristics is compared with that of the idealized Hertzian solutions for two separate two-body contact problems. The numerical results obtained by directly treating a multibody contact are believed to be more exact than the Hertzian solution for the idealized two separate two-body contact problems.

A finite element algorithm for contact problems with friction

  • Liu, C.H.;Hofstetter, G.;Mang, H.A.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.289-297
    • /
    • 1995
  • A finite element algorithm for consideration of contact constraints is presented. It is characterized by introducing the geometric constraints, resulting from contact conditions, directly into the algebraic system of equations for the incremental displacements of an incremental iterative solution procedure. The usefulness of the proposed algorithm for efficient solutions of contact problems involving large displacements and large strains is demonstrated in the numerical investigation.

Review : Thermal contact problems at cryogenic temperature

  • Jeong, Sangkwon;Park, Changgi
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • This paper addresses technical problems of thermal contact conductance or resistance which inevitably occurs in most cryogenic engineering systems. The main focus of this paper is to examine what kind of physical factors primarily influences the thermal contact resistance and to suggest how it can be minimized. It is a good practical rule that the contact surface must have sub-micron roughness level with no oxide layer and be thinly covered by indium, gold, or Apiezon-N grease for securing sufficient direct contact area. The higher contact pressure, the lower the thermal contact resistance. The general description of this technique has been widely perceived and reasonable engineering results have been achieved in most applications. However, the detailed view of employing these techniques and their relative efficacies to reduce thermal contact resistances need to be thoroughly reviewed. We should consider specific thermal contact conditions, examine the engineering requirements, and execute each method with precautions to fulfil their maximum potentials.

A Parallel Finite Element Procedure for Contact-Impact Problems (충돌해석을 위한 병렬유한요소 알고리즘)

  • Har, Jason
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1286-1290
    • /
    • 2003
  • This paper presents a newly implemented parallel finite element procedure for contact-impact problems. Three sub-algorithms are includes in the proposed parallel contact-impact procedure, such as a parallel Belytschko-Lin-Tsay (BLT) shell element generation, a parallel explicit time integration scheme, and a parallel contact search algorithm based on the master slave slide-line algorithm. The underlying focus of the algorithms is on its effectiveness and efficiency for inclusion in future finite element systems on parallel computers. Throughout this research, a prototype code, named GT-PARADYN, is developed on the IBM SP2, a distributed-memory computer. Some numerical examples are provided to demonstrate the timing results of the procedure, discussing the accuracy and efficiency of the code.

  • PDF

NUMERICAL ANALYSIS OF DYNAMIC CONTACT ANGLE PROBLEMS IN ELECTROWETTING WITH LEVEL SET METHOD (레벨셋 기법을 이용한 전기습윤 현상의 동적 접촉각 문제에 대한 수치해석)

  • Park, J.K.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.155-158
    • /
    • 2009
  • We developed a numerical method to analyze the contact-line problems, incorporating a dynamic contact angle model. We used level set method to capture free surface. The method is applied to the analysis of dynamic behavior of a droplet in DC electrowetting. The result is compared with an experimental data and result of perturbation method.

  • PDF

Development of Managing System of Vision Probe for CMM (3차원 측정기용 비젼프로브 운용시스템 개발)

  • 박재성;박희재;김구영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.501-505
    • /
    • 1996
  • In CMM system, a contact probe is not applicable to very small, or flexible elements. There is need to develop non-contact probes of CCD camera. But non-contact probes have some technical problems, including distortion, user interface and time delay. This development gives the foundation of the non-contact probe system and some useful solutions for the problems. The results can be useful for industry application.

  • PDF

Analysis of Frictional Contact Problems of Nonlinearly Deformable Bodies by Using Contact Error Vector (접촉 오차 벡터를 이용한 비선형 변형체의 마찰접촉 해석)

  • Lee, Kisu;Kim, Bang-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.305-319
    • /
    • 2000
  • Numerical solution lot frictional contact problems of nonlinearly deformable bodies having large deformation is presented. The contact conditions on the possible contact points are expressed by using the contact error vector, and the iterative scheme is used to reduce the contact error vector monotonically toward zero. At each iteration the solution consists of two steps : The first step is to revise the contact force by using the contact error vector given by the previous geometry, and the second step is to compute the displacement and the contact error vector by solving the equilibrium equation with the contact force given at the first step. Convergence of the iterative scheme to the correct solution is analyzed, and the numerical simulations we performed with a rigid-plastic membrane and a nonlinear elastic beam.

  • PDF