References
- Bathe, K.J. and Chaudhary, A. (1985), "A solution method for planar and axisymmetric contact problems", Int. J. Numer. Meth. Engng., 21, 65-88. https://doi.org/10.1002/nme.1620210107
- Chandrasekaran, N., Haisler, W.E. and Goforth, R.E. (1987), "A finite element solution method for contact problems with friction", Int. J. Numer. Meth. Engng., 24, 477-495. https://doi.org/10.1002/nme.1620240302
- Chang, T.Y., Saleeb, A.F. and Shyu, S.C. (1987), "Finite element solution of two-dimentional contact problems based on a consistent mixed formulation", Comput. Struct., 27, 455-466. https://doi.org/10.1016/0045-7949(87)90276-8
- Chaudhary, A. and Bathe, K. J. (1986), "A solution method for static and dynamic analysis of three-dimensional contact problems with friction", Comput. Struct., 24, 885-873. https://doi.org/10.1016/0045-7949(86)90296-8
- Hughes, T. J. R., Taylor, R. L., Sackman, J. L., Curnier, A. and Kanoknukulchai, W. (1976), "A finite element method for a class of contact-impact problems", Comput. Meth. Appl. Mech. Engng., 8, 249-276. https://doi.org/10.1016/0045-7825(76)90018-9
- Ju, J. W. and Taylor, R. L. (1988), "A perturbed Lagrangian formulation for the finite element solution of nonlinear frictional contact problems", J. Theor. Appl. Mech., Special Issue, 7, 1-14.
- Kikuchi, N. and Oden, J. T. (1984), "Contact problem in elasto-statics", in Finite Elements, 5, Eds, Oden, J. T. and Carey, G. F., Prentice-Hall, Englewood Cliffs, NJ.
- Landers, J. A. and Taylor, R. L. (1985), "An augmented Lagrangian formulation for the finite element solution of contact problems", Report No. UCB/SESM-85/09, University of California Berkeley.
- Oden, J. T. and Pires, E. B. (1984), "Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws", Comput. Struct., 19, 137-147. https://doi.org/10.1016/0045-7949(84)90212-8
- Papadopoulos, P. and Taylor, R. L. (1992), "A Mixed formulation for the finite element solution of contact problems", Comp. Meth. Appl. Mech. Engr., 94, 373-389. https://doi.org/10.1016/0045-7825(92)90061-N
- Peric, D. and Owen, D. R. J. (1992), "Computational model for 3-D contact problems with friction based on the penalty method", Int. J. Numer. Meth. Engng., 35, 1289-1309. https://doi.org/10.1002/nme.1620350609
- Simo, J. C., Wriggers, P. and Taylor, R. L. (1985), "A perturbed Lagrangian formulation for the finite element solution of contact problems", Comput. Meth. Appl. Mech. Engng., 50, 163-180. https://doi.org/10.1016/0045-7825(85)90088-X
- Simo, J. C. and Taylor, R. L. (1991), "Quasi-incompressible finite elasticity in principal stretches, continuum basis and numerical algorithms", Comp. Meth. Appl. Mech. Engr., 85, 273-310. https://doi.org/10.1016/0045-7825(91)90100-K
- Simo, J. C. and Laursen, T. A. (1992), "An augmented Lagrangian treatment of contact problems involving friction", Comput. Struct., 42, 97-116. https://doi.org/10.1016/0045-7949(92)90540-G
- Sussman, T. and Bathe, K.J. (1987), "A finite element formulation for nonlinear incompressible elastic and inelastic analysis", Comp. Struct., 26(1/2), 357-409. https://doi.org/10.1016/0045-7949(87)90265-3
- Wriggers, P. and Zavarise, G. (1993), "Application of augmented Lagrangian techniques for non-linear constitutive laws in contact interfaces", Comm. Num. Meth. Eng., 9, 815-824. https://doi.org/10.1002/cnm.1640091005
- Zhong, Z. H. and Mackerle, J. (1992), "Static contact problems-A review", Engineering Computations, 9, 3-37. https://doi.org/10.1108/eb023846
Cited by
- Examination of analytical and finite element solutions regarding contact of a functionally graded layer vol.76, pp.3, 1995, https://doi.org/10.12989/sem.2020.76.3.325