DOI QR코드

DOI QR Code

A finite element algorithm for contact problems with friction

  • Liu, C.H. (Institute for Strength of Materials, Technical University of Vienna) ;
  • Hofstetter, G. (Institute for Strength of Materials, Technical University of Vienna) ;
  • Mang, H.A. (Institute for Strength of Materials, Technical University of Vienna)
  • Published : 1995.05.25

Abstract

A finite element algorithm for consideration of contact constraints is presented. It is characterized by introducing the geometric constraints, resulting from contact conditions, directly into the algebraic system of equations for the incremental displacements of an incremental iterative solution procedure. The usefulness of the proposed algorithm for efficient solutions of contact problems involving large displacements and large strains is demonstrated in the numerical investigation.

Keywords

References

  1. Bathe, K.J. and Chaudhary, A. (1985), "A solution method for planar and axisymmetric contact problems", Int. J. Numer. Meth. Engng., 21, 65-88. https://doi.org/10.1002/nme.1620210107
  2. Chandrasekaran, N., Haisler, W.E. and Goforth, R.E. (1987), "A finite element solution method for contact problems with friction", Int. J. Numer. Meth. Engng., 24, 477-495. https://doi.org/10.1002/nme.1620240302
  3. Chang, T.Y., Saleeb, A.F. and Shyu, S.C. (1987), "Finite element solution of two-dimentional contact problems based on a consistent mixed formulation", Comput. Struct., 27, 455-466. https://doi.org/10.1016/0045-7949(87)90276-8
  4. Chaudhary, A. and Bathe, K. J. (1986), "A solution method for static and dynamic analysis of three-dimensional contact problems with friction", Comput. Struct., 24, 885-873. https://doi.org/10.1016/0045-7949(86)90296-8
  5. Hughes, T. J. R., Taylor, R. L., Sackman, J. L., Curnier, A. and Kanoknukulchai, W. (1976), "A finite element method for a class of contact-impact problems", Comput. Meth. Appl. Mech. Engng., 8, 249-276. https://doi.org/10.1016/0045-7825(76)90018-9
  6. Ju, J. W. and Taylor, R. L. (1988), "A perturbed Lagrangian formulation for the finite element solution of nonlinear frictional contact problems", J. Theor. Appl. Mech., Special Issue, 7, 1-14.
  7. Kikuchi, N. and Oden, J. T. (1984), "Contact problem in elasto-statics", in Finite Elements, 5, Eds, Oden, J. T. and Carey, G. F., Prentice-Hall, Englewood Cliffs, NJ.
  8. Landers, J. A. and Taylor, R. L. (1985), "An augmented Lagrangian formulation for the finite element solution of contact problems", Report No. UCB/SESM-85/09, University of California Berkeley.
  9. Oden, J. T. and Pires, E. B. (1984), "Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws", Comput. Struct., 19, 137-147. https://doi.org/10.1016/0045-7949(84)90212-8
  10. Papadopoulos, P. and Taylor, R. L. (1992), "A Mixed formulation for the finite element solution of contact problems", Comp. Meth. Appl. Mech. Engr., 94, 373-389. https://doi.org/10.1016/0045-7825(92)90061-N
  11. Peric, D. and Owen, D. R. J. (1992), "Computational model for 3-D contact problems with friction based on the penalty method", Int. J. Numer. Meth. Engng., 35, 1289-1309. https://doi.org/10.1002/nme.1620350609
  12. Simo, J. C., Wriggers, P. and Taylor, R. L. (1985), "A perturbed Lagrangian formulation for the finite element solution of contact problems", Comput. Meth. Appl. Mech. Engng., 50, 163-180. https://doi.org/10.1016/0045-7825(85)90088-X
  13. Simo, J. C. and Taylor, R. L. (1991), "Quasi-incompressible finite elasticity in principal stretches, continuum basis and numerical algorithms", Comp. Meth. Appl. Mech. Engr., 85, 273-310. https://doi.org/10.1016/0045-7825(91)90100-K
  14. Simo, J. C. and Laursen, T. A. (1992), "An augmented Lagrangian treatment of contact problems involving friction", Comput. Struct., 42, 97-116. https://doi.org/10.1016/0045-7949(92)90540-G
  15. Sussman, T. and Bathe, K.J. (1987), "A finite element formulation for nonlinear incompressible elastic and inelastic analysis", Comp. Struct., 26(1/2), 357-409. https://doi.org/10.1016/0045-7949(87)90265-3
  16. Wriggers, P. and Zavarise, G. (1993), "Application of augmented Lagrangian techniques for non-linear constitutive laws in contact interfaces", Comm. Num. Meth. Eng., 9, 815-824. https://doi.org/10.1002/cnm.1640091005
  17. Zhong, Z. H. and Mackerle, J. (1992), "Static contact problems-A review", Engineering Computations, 9, 3-37. https://doi.org/10.1108/eb023846

Cited by

  1. Examination of analytical and finite element solutions regarding contact of a functionally graded layer vol.76, pp.3, 1995, https://doi.org/10.12989/sem.2020.76.3.325