• 제목/요약/키워드: Contact Printing

검색결과 240건 처리시간 0.032초

A Study on Hydrophobic Surface Treatment for Microfluidic System Fabrication Based on SLA 3D Printing Method (SLA 3D 프린팅 방식 기반의 미세 유체 시스템 제작을 위한 소수성 표면 처리 연구)

  • Jae Uk Heo;Seo Jun Bae;Do Jin Im
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.105-111
    • /
    • 2024
  • The SLA (Stereolithography Apparatus) method is a type of 3D printing technique predicated on the transformation of liquid photocurable resin into a solid form through UV laser exposure, and its application is increasing in various fields. In this study, we conducted research to enhance the hydrophobicity and transparency of SLA 3D printing surfaces for microfluidic system production. The enhancement of surface hydrophobicity in SLA outputs was attainable through the application of hydrophobic coating methods, but the coating durability under different conditions varied depending on the type of hydrophobic coating. Additionally, to simultaneously achieve the required transparency and hydrophobic properties for the fabrication of microfluidic systems, we applied hydrophobic coatings to the proposed transparency enhancement method from prior research and compared the changes in contact angles. Teflon coating was proposed as a suitable hydrophobic coating method for the fabrication of microfluidic systems, given its excellent transparency and high coating durability in various environmental conditions, in comparison to titanium dioxide coating. Finally, we produced an Electrophoresis of Charged Droplet (ECD) chip, one of the digital microfluidics systems, using SLA 3D printing with the proposed Teflon coating method (Fluoropel 800). Droplet manipulation was successfully demonstrated with the fabricated chip, confirming the potential application of SLA 3D printing technology in the production of microfluidic systems.

Formation of Ni / Cu Electrode for Crystalline Si Solar Cell Using Light Induced Electrode Plating (광유도 전해 도금법을 이용한 결정질 실리콘 태양전지용 Ni/Cu 전극 형성)

  • Hong, Hyekwon;Park, Jeongeun;Cho, Youngho;Kim, Dongsik;Lim, Donggun;Song, Woochang
    • Journal of Institute of Convergence Technology
    • /
    • 제8권1호
    • /
    • pp.33-39
    • /
    • 2018
  • The screen printing method for forming the electrode by applying the existing pressure is difficult to apply to thin wafers, and since expensive Ag paste is used, it is difficult to solve the problem of cost reduction. This can solve both of the problems by forming the front electrode using a plating method applicable to a thin wafer. In this paper, the process conditions of electrode formation are optimized by using LIEP (Light-Induced Electrode Plating). Experiments were conducted by varying the Ni plating bath temperature $40{\sim}70^{\circ}C$, the applied current 5 ~ 15 mA, and the plating process time 5 ~ 20 min. As a result of the experiment, it was confirmed that the optimal condition of the structural characteristics was obtained at the plating bath temperature of $60^{\circ}C$, 15 mA, and the process time of 20 min. The Cu LIEP process conditions, experiments were conducted with Cu plating bath temperature $40{\sim}70^{\circ}C$, applied voltage 5 ~ 15 V, plating process time 2 ~ 15 min. As a result of the experiment, it was confirmed that the optimum conditions were obtained as a result of electrical and structural characteristics at the plating bath temperature of $60^{\circ}C$ and applied current of 15 V and process time of 15 min. In order to form Ni silicide, the firing process time was fixed to 2 min and the temperature was changed to $310^{\circ}C$, $330^{\circ}C$, $350^{\circ}C$, and post contact annealing was performed. As a result, the lowest contact resistance value of $2.76{\Omega}$ was obtained at the firing temperature of $310^{\circ}C$. The contact resistivity of $1.07m{\Omega}cm^2$ can be calculated from the conditionally optimized sample. With the plating method using Ni / Cu, the efficiency of the solar cell can be expected to increase due to the increase of the electric conductivity and the decrease of the resistance component in the production of the solar cell, and the application to the thin wafer can be expected.

Investigated properties of Low temperature curing Ag Paste for Silicon Hetero-junction Solar Cell

  • Oh, Donghyun;Jeon, Minhan;Kang, Jiwoon;Shim, Gyeongbae;Park, Cheolmin;Lee, Youngseok;Kim, Hyunhoo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.160-160
    • /
    • 2016
  • In this study, we applied the low temperature curing Ag paste to replace PVD System. The electrode formation of low temperature curing Ag paste for silicon Hetero-junction solar cells is important for improving device characteristics such as adhesion, contact resistance, fill factor and conversion efficiency. The low temperature curing Ag paste is composed various additives such as solvent, various organic materials, polymer, and binder. it depends on the curing temperature conditions. The adhesion of the low temperature curing Ag paste was decided by scratch test. The specific contact resistance was measured using the transmission line method. All of the Ag electrodes were experimented at various curing temperatures within the temperature range of $160^{\circ}C-240^{\circ}C$, at $20^{\circ}C$ intervals. The curing time was also changed by varying the conditions of 10-50min. In the optimum curing temperature $200^{\circ}C$ and for 20 min, the measured contact resistance is $19.61m{\Omega}cm^2$. Over temperature $240^{\circ}C$, confirmed bad contact characteristic. We obtained photovoltaic parameter of the industrial size such as Fill Factor (FF), current density (Jsc), open-circuit voltage (Voc) and convert efficiency of up to 76.2%, 38.1 mA/cm2, 646 mV and 18.3%, respectively.

  • PDF

Inkjet-Printed Capacitive Touch Paper (잉크젯 프린팅 기술을 이용한 캐패스티브 터치 페이퍼)

  • Yun, Taehwa;Lee, Sak;Lim, Sungjoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제40권5호
    • /
    • pp.799-805
    • /
    • 2015
  • In this paper, an inkjet-printed capacitive touch pad is proposed. This touch pad detects contacts of human finger by detecting changes in effective capacitance due to electrical impedance of human finger. A flexible, low-cost and disposable paper is used as a substrate. Inkjet printing technology makes the fabrication fast, simple and environmentally friendly. Measured capacitances of the touched and untouched states are in the range of 163 to 182pF and 218 to 272pF, respectively. The differences in the measured capacitance of each state are sufficiently large to recognize that a finger has made contact with touch pad.

Pentacene Thin Film Transistors with Various Polymer Gate Insulators

  • Kim, Jae-Kyoung;Kim, Jung-Min;Yoon, Tae-Sik;Lee, Hyun-Ho;Jeon, D.;Kim, Yong-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권1호
    • /
    • pp.118-122
    • /
    • 2009
  • Organic thin film transistors with a pentacene active layer and various polymer gate insulators were fabricated and their performances were investigated. Characteristics of pentacene thin film transistors on different polymer substrates were investigated using an atomic force microscope (AFM) and x-ray diffraction (XRD). The pentacene thin films were deposited by thermal evaporation on the gate insulators of various polymers. Hexamethyldisilazane (HMDS), polyvinyl acetate (PVA) and polymethyl methacrylate (PMMA) were fabricated as the gate insulator where a pentacene layer was deposited at 40, 55, 70, 85, 100 oC. Pentacene thin films on PMMA showed the largest grain size and least trap concentration. In addition, pentacene TFTs of top-contact geometry are compared with PMMA and $SiO_2$ as gate insulators, respectively. We also fabricated pentacene TFT with Poly (3, 4-ethylenedioxythiophene)-Polysturene Sulfonate (PEDOT:PSS) electrode by inkjet printing method. The physical and electrical characteristics of each gate insulator were tested and analyzed by AFM and I-V measurement. It was found that the performance of TFT was mainly determined by morphology of pentacene rather than the physical or chemical structure of the polymer gate insulator

Analysis of Contact Properties by Varying the Firing Condition of AgAl Electrode for n-type Crystalline Silicon Solar Cell (AgAl 전극 고온 소성 조건 가변에 따른 N-형 결정질 실리콘 태양전지의 접촉 특성 분석)

  • Oh, Dong-Hyun;Chung, Sung-Youn;Jeon, Min-Han;Kang, Ji-Woon;Shim, Gyeong-Bae;Park, Cheol-Min;Kim, Hyun-Hoo;Yi, Jun-Sin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제29권8호
    • /
    • pp.461-465
    • /
    • 2016
  • n-type silicon shows the better tolerance towards metal impurities with a higher minority carrier lifetime compared to p-type silicon substrate. Due to better lifetime stability as compared to p-type during illumination made the photovoltaic community to switch toward n-type wafers for high efficiency silicon solar cells. We fabricated the front electrode of the n-type solar cell with AgAl paste. The electrodes characteristics of the AgAl paste depend on the contact junction depth that is closely related to the firing temperature. Metal contact depth with p+ emitter, with optimized depth is important as it influence the resistance. In this study, we optimize the firing condition for the effective formation of the metal depth by varying the firing condition. The firing was carried out at temperatures below $670^{\circ}C$ with low contact depth and high contact resistance. It was noted that the contact resistance was reduced with the increase of firing temperature. The contact resistance of $5.99m{\Omega}cm^2$ was shown for the optimum firing temperature of $865^{\circ}C$. Over $900^{\circ}C$, contact junction is bonded to the Si through the emitter, resulting the contact resistance to shunt. we obtained photovoltaic parameter such as fill factor of 76.68%, short-circuit current of $40.2mA/cm^2$, open-circuit voltage of 620 mV and convert efficiency of 19.11%.

Si-Containing Nanostructures for Energy-Storage, Sub-10 nm Lithography, and Nonvolatile Memory Applications

  • Jeong, Yeon-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.108-109
    • /
    • 2012
  • This talk will begin with the demonstration of facile synthesis of silicon nanostructures using the magnesiothermic reduction on silica nanostructures prepared via self-assembly, which will be followed by the characterization results of their performance for energy storage. This talk will also report the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. It will be presented that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. Directed self-assembly (DSA) of block copolymers (BCPs) can generate uniform and periodic patterns within guiding templates, and has been one of the promising nanofabrication methodologies for resolving the resolution limit of optical lithography. BCP self-assembly processing is scalable and of low cost, and is well-suited for integration with existing semiconductor manufacturing techniques. This talk will introduce recent research results (of my research group) on the self-assembly of Si-containing block copolymers for the achievement of sub-10 nm resolution, fast pattern generation, transfer-printing capability onto nonplanar substrates, and device applications for nonvolatile memories. An extraordinarily facile nanofabrication approach that enables sub-10 nm resolutions through the synergic combination of nanotransfer printing (nTP) and DSA of block copolymers is also introduced. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. This talk will also report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by the self-assembly of Si-containing BCPs. This approach offers a practical pathway to fabricate high-density resistive memory devices without using high-cost lithography and pattern-transfer processes. Finally, this talk will present a novel approach that can relieve the power consumption issue of phase-change memories by incorporating a thin $SiO_x$ layer formed by BCP self-assembly, which locally blocks the contact between a heater electrode and a phase-change material and reduces the phase-change volume. The writing current decreases by 5 times (corresponding to a power reduction of 1/20) as the occupying area fraction of $SiO_x$ nanostructures varies.

  • PDF

Electrode formation using Light induced electroless plating in the crystalline silicon solar cells

  • Jeong, Myeong-Sang;Gang, Min-Gu;Lee, Jeong-In;Kim, Dong-Hwan;Song, Hui-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.347.1-347.1
    • /
    • 2016
  • Screen printing is commonly used to form the electrode for crystalline silicon solar cells. However, it has caused high resistance and low aspect ratio, resulting in decrease of conversion efficiency. Accordingly, Ni/Cu/Ag plating method could be applied for crystalline silicon solar cells to reduce contact resistance. For Ni/Cu/Ag plating, laser ablation process is required to remove anti-reflection layers prior to the plating process, but laser ablation results in surface damage and then decrease of open-circuit voltage and cell efficiency. Another issue with plating process is ghost plating. Ghost plating occurred in the non-metallized region, resulting from pin-hole in anti-reflection layer. In this paper, we investigated the effect of Ni/Cu/Ag plating on the electrical properties, compared to screen printing method. In addition, phosphoric acid layer was spin-coated prior to laser ablation to minimize emitter damage by the laser. Phosphorous elements in phosphoric acid generated selective emitter throughout emitter layer during laser process. Then, KOH treatment was applied to remove surface damage by laser. At this step, amorphous silicon formed by laser ablation was recrystallized during firing process and remaining of amorphous silicon was removed by KOH treatment. As a result, electrical properties as Jsc, FF and efficiency were improved, but Voc was lower than screen printed solar cells because Voc was decreased due to surface damage by laser process. Accordingly, we expect that efficiency of solar cells could be improved by optimization of the process to remove surface damage.

  • PDF

A Study on the Description Elements of the Book Colophon in Korea (우리나라의 도서 판권기 기술서지 요소 고찰)

  • Lee, Myoung-Gyu
    • Journal of Korean Library and Information Science Society
    • /
    • 제41권1호
    • /
    • pp.211-231
    • /
    • 2010
  • Colophon means an element to describe bibliographic information of the concerned books on the specific space like a back of title page or the last page of a book, and is used as a useful information source when cataloging in a library. Imprint means an element to describe publication information to a title page or verso of a title page of a book. In addition, institutionally required elements to describe on a book are an author, a publisher, a date of publication, a publishing company, ISBN, and a price when printing publications. The bibliographic elements to describe on colophon are a title, an author, a place of publication, a publisher, the date of publication, a place of printing, a printer, the date of printing, edition, impression, the address and contact point of a publisher, a price, ISBN, a copyright, CIP, and the profile of an author, etc. The necessary bibliographic elements according to the development of publishing technology and changes of publishing environments are additionally described in this colophon.

  • PDF

Restoration of a White Porcelain Pitcher Using 3D Printing (3D 프린팅을 이용한 백자수주의 복원 연구)

  • Lee, Haesoon;Wi, Koangchul
    • Conservation Science in Museum
    • /
    • 제16권
    • /
    • pp.122-137
    • /
    • 2015
  • White porcelain pitcher with an openwork dragon and cloud design across its surface in the collection of the National Museum of Korea (Deoksu 5531) was acquired in 1915. The restoration has been so far completed only for the mouth of the pitcher. This study discusses a new method based on 3D scanning and printing for the restoration of missing parts in the openwork dragon and cloud design. A strength test was performed on six output materials that have been already commercialized for comparison with the strength of materials used for traditional restoration such as epoxy putty (Quick Wood®) and epoxy (Araldite AY103+HY956®). This process confirmed that the digital technology-aided making of a restoration model requires less time and efforts than handmade work, all the while producing a more precise model. More importantly, this method being a non-contact method, it reduces risks associated with handmade work. Another advantage of this method is that digital pre-restoration images can be saved and used for future references. Notwithstanding, future research is needed on how to effectively apply digital technology for restoration of ancient objects and how to evaluate and use 3D output as well as on the method of shaping, joining and coloring the 3D output.