• Title/Summary/Keyword: Contact Noise

Search Result 613, Processing Time 0.044 seconds

Analysis of the Dynamic Behavior of a CNC Automatic Lathe Spindle System (CNC 자동선반 스핀들시스템의 동적 거동 해석)

  • Kim, T.J.;Koo, J.H.;Lee, S.B.;Kim, M.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.261-267
    • /
    • 2009
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. Therefore, it is important to recognize the effect of unbalance mass. This paper presents analysis of dynamic behavior of a high speed spindle with a built-in motor. The spindle is supported by the angular contact ball bearings and the rotor is fixed at the middle of spindle. The spindle used in CNC automatic lathe has been investigated using combined methodologies of finite elements and transfer matrices. The Houbolt method is used for the integration of the system equations and the dynamic behavior of spindle is obtained considering unbalance mass of rotor. Results show that increasing rotational speed of spindle magnifies the whirl responses of spindle seriously. Also the whirl responses of spindle are affected by the other factors such as unbalance mass and bearing stiffness.

Experimental Modal Analysis of Perforated Rectangular Plates Submerged In Water (물에 잠긴 다공 직사각평판의 실험적 모드 해석)

  • 유계형;이명규;정경훈;이성철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.70-78
    • /
    • 2003
  • This paper dealt with an experimental study on the hydroelastic vibration of clamped perforated rectangular plates submerged in water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 1.750, 2.125, 2.500, 3.000 and 3.750. The natural frequencies of the perforated plates in air were obtained by the analytical method based on the relation between the reference kinetic and maximum potential energy and compared with the experimental results. Good agreement between the results was found for the natural frequencies of the perforated plates in air. It was empirically found that the natural frequencies of the perforated plate in air increase with an increase of P/D, on the other hand, the natural frequencies of the perforated plate in contact with water decrease with an increase of P/D. Additionally. the effect of the submerged depth on the natural frequency was investigated.

An Experimental Study on Brake Judder of Braking on Vehicle (실차 상태에서의 제동시 이상떨림 현상에 관한 실험적 연구)

  • Hong, Il-Min;Lee, Won-Sub;Lee, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.338-345
    • /
    • 2002
  • The study presents a new testing and analysis method for brake judder on vehicle. For the identification of the excitation mechanism of a brake judder, it is necessary to measure the dynamic brake disc geometry during braking on vehicle. The non-contact sensor system was used to monitor the brake disc geometry. Brake torque variation (BTV) caused by disc thickness variation (DTV) is the primary excitation for brake judder. The mechanical effects generating BTV are linked not only to initial manufacturing tolerances but also to uneven wear. Therefore, the brake disc geometry should be strictly managed to initial condition. The aim of this study has been to measure the dynamic DTV and runout on vehicle and analyze the influence of test parameters on brake judder and compare the disc component with vehicle matching about the DTV Profile. As a result of this study, The amplitude of brake judder is proportional to vehicle speed and fluid pressure fluctuation on braking. The major sources of brake judder are directly related to disc thickness variation and side runout variation of corner assembly (disc, hub. bearing).

Stability Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (Waviness가 있는 볼베어링으로 지지된 회전계의 안정성 해석)

  • 정성원;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.181-189
    • /
    • 2002
  • This research presents an analytical model to investigate the stability due to the ball bearing waviness in a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time-varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i= 1,2,3..).

  • PDF

Air Similarity Test and Analysis of Steam Turbine Labyrinth Seal for Leakage Verification (스팀터빈용 래비린스 실의 누설량 규명을 위한 공기상사 실험 및 해석)

  • Ahn, Sang-Kyu;Kim, Seung-Jong;Lee, Yong-Bok;Kim, Chang-Ho;Ha, Tae-Wong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1149-1149
    • /
    • 2006
  • The leakage characteristic is an important factor in power plant. However, most of power plant have efficiency problem which is occurred leaking between high pressure steam turbine axle and stator. The labyrinth seal which is used between the main turbine axle and stator in the power plant. Because it is able to be non-contact seal and it is minimize clearance to decrease the leakage. But its actual system is too huge to experiment. Therefore, most steam turbine seal performance tests were conducted by air similarity test. This paper described a test facility and program for air similarity test of high pressure steam turbine seal. A test facility has been designed and built to evaluate leakage verification of labyrinth seal. The test facility consist of air compressor, anti-swirl labyrinth seal for 1/3 air similarity model, pressure transducer, air flow measure system, instrumentation and auxiliary system. For evaluation of steam turbine seal performance, the air similarity test of labyrinth seal leakage verification was conducted and we compared experiment data and analysis result.

  • PDF

Measurements of Whole-body Vibration Exposed from and Their UH60-helicopter Analysis Results (UH60 헬기 조종사의 피폭진동 측정 및 평가 결과)

  • Cheung, Wan-Sup;Byeon, Joo-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1327-1331
    • /
    • 2005
  • This Paper addresses what amount of whole-body vibration is exposed to Korean pilots of UH60 helicopters during their mission flight. To measure the expose4 whole-body vibration, the 12-axis whole-body vibration measurement system was used. It enables the direct measurement of whole-body vibration exposed from the body contact area consisting of the feet, hip and back. The measured 12-axis vibration signals were used to evaluate the vibration comfort level experienced by the pilots of UH60 helicopters. The evaluated vibration comfort level is found to be closeto 0.74-0.79m/s, which is equivalent to the semantic scale of 'fairly uncomfortable'. To assess the health effects of whole-body vibration exposed to Korean pilots of UH60 helicopters during their mission flight, the rms-based and VDV(vibration dose value)-based evaluation schemes, recommended by ISO 2631-1:1977, were exploited in this work. The evaluated results indicate that Korean pilots cannot avoid the fatigue-decreased proficiency limit after two-hour continuous flight. The whole-body vibration level exposed from the UH60 helicopters during continuous 10-hours mission flight is found to reach to the vibration exposure limit.

Bearing Vibration and Fatigue Life Analysis According to Fitting between Ball Bearing and Housing with Geometrical Errors (볼 베어링과 형상오차를 갖는 하우징의 끼워 맞춤에 따른 베어링 진동 및 피로 수명의 영향)

  • Lee, Young-Keun;Lee, Seok-Hoon;Jung, Il-Kwon;Cha, Cheol-Hwan;Han, Hyo-Seup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.441-451
    • /
    • 2006
  • It is known that ball bearings mounted in housing or on shaft are playing a key role to keep it running smoothly. The roundness of a housing bore on which bearing outer ring is mounted with interference has directly affected the running accuracy of bearing. The running accuracy of bearing, therefore, can extend the significant influence to the rotating machinery as well. In this paper, bearing's vibration and fatigue life considering raceway roundness of ball bearing before and after mounted in housing bore are theoretically estimated. To perform analysis, a simple three degrees of freedom model was proposed and then Newton-Raphson iterative method was introduced to be utilized in the analysis. The results show that the vibration magnitude of ball bearing fitted into housing unit is appeared considerably larger than the one of its pre-assembling. And theoretical $L_{10}$ life which ninety percent of the bearing population will endure decreased in about fifty percent.

A Study on Development of the Hybrid Shock Absorber for Lunar Lander (달 착륙선 하이브리드 충격 흡수장치의 개발에 관한 연구)

  • Lee, Jaehyeong;Hwang, Jai-hyuk;Bae, Jae-sung;Lim, Jaehyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.81-86
    • /
    • 2012
  • The shock absorber is very important in various mechanical field. Without the shock absorber, the structure might be broken. For lunar lander, honeycomb shock absorber to absorber the shock by using plastic deformation of honeycomb has been used. It is cheap and simple to use but impossible using again without changing the honeycomb. The oleo-pneumatic type shock absorber is not able to use in the cosmos because it is vacuum and its temperature. This study suggests the hybrid shock absorber combined spring-ratchet mechanical shock absorber and eddy current electromagnetic damper. The ratchet restricts rebound of lunar lander and the spring converts the impact energy to the potential energy of the spring. The eddy current damper dissipates the impact energy by eddy current force without contact between the parts. This hybrid shock absorber is reusable while the honeycomb shock absorber isn't. The impact absorbing test of the hybrid shock absorber was carried out. This paper shows that the compared results the hybrid shock absorber with ratchet and without ratchet and evaluates the possibility of using for lunar lander.

  • PDF

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method

  • Caesarendra, W.;Park, J.H.;Choi, B.H.;Kosasih, P.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.388-393
    • /
    • 2012
  • Vibration condition monitoring at low rotational speeds is still a challenge. Acoustic emission (AE) is the most used technique when dealing with low speed bearings. At low rotational speeds, the energy induced from surface contact between raceway and rolling elements is very weak and sometimes buried by interference frequencies. This kind of issue is difficult to solve using vibration monitoring. Therefore some researchers utilize artificial damage on inner race or outer race to simplify the case. This paper presents vibration signal analysis of low speed slewing bearings running at a low rotational speed of 15 rpm. The natural damage data from industrial practice is used. The fault frequencies of bearings are difficult to identify using a power spectrum. Therefore the relatively improved method of empirical mode decomposition (EMD), ensemble EMD (EEMD) is employed. The result is can detect the fault frequencies when the FFT fail to do it.

  • PDF

Multibody modeling and Analysis on Difference of Pin-reaction Force and Vibration caused by Offset in Fixed Outer Ring Type Cycloidal Speed Reducer (다물체 모델링을 이용한 외륜 고정형 Cycloid 감속기의 Offset에 의한 핀반력 및 진동차이 분석)

  • Kim, Hong Ki;Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1057-1063
    • /
    • 2012
  • A cycloid speed reducer is a type of the speed reducers. The cycloid speed reducer has a eccentric rotating motion and offset to avoid some problem of assembly, so it has a disadvantage for vibration. In this paper, a multi-body dynamic model is developed for a cycloid speed reducer and the dynamic behaviors of the reducer are investigated. The cycloid speed reducer consists of cycloidal plate gears, housing gear, input shaft, output pin and shaft, and eccentric bearings. Using a CAD program, each component of cycloid reducer is modeled based on the offset and multi-body simulations are performed using Recurdyn. As a result, the pin reaction force and the amplitude of bearing displacement are increased by the offset.