• Title/Summary/Keyword: Contact Material

Search Result 2,523, Processing Time 0.03 seconds

Approaches to Reduce the Contact Resistance by the Formation of Covalent Contacts in Graphene Thin Film Transistors

  • Na, Youngeun;Han, Jaehyun;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.55-61
    • /
    • 2017
  • Graphene, with a carrier mobility achieving up to $140,000cm^2/Vs$ at room temperature, makes it an ideal material for application in semiconductor devices. However, when the metal comes in contact with the graphene sheet, an energy barrier forms at the metal-graphene interface, resulting in a drastic reduction of the carrier mobility of graphene. In this review, the various methods of forming metal-graphene covalent contacts to lower the contact resistance are discussed. Furthermore, the graphene sheet in the area of metal contact can be cut in certain patterns, also discussed in this review, which provides a more efficient approach to forming covalent contacts, ultimately reducing the contact resistance for the realization of high-performance graphene devices.

Application of artificial neural networks in the analysis of the continuous contact problem

  • Yaylaci, Ecren Uzun;Oner, Erdal;Yaylaci, Murat;Ozdemir, Mehmet Emin;Abushattal, Ahmad;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.35-48
    • /
    • 2022
  • This paper investigates the artificial neural network (ANN) to predict the dimensionless parameters for contact pressures and contact lengths under the rigid punch, the initial separation loads, and the initial separation distances of a contact problem. The problem consisted of two elastic infinitely layers (EL) loaded by means of a rigid cylindrical punch and resting on a half-infinite plane (HP). Firstly, the problem was formulated and solved theoretically using the Theory of Elasticity (ET). Secondly, the contact problem was extended based on the ANN. External load, the radius of punch, layer heights, and material properties were created by giving examples of different values used at the training and test stages of ANN. Finally, the accuracy of the trained neural networks for the case was tested using 134 new data, generated via ET solutions to determine the best network model. ANN results were compared with ET results, and well agreements were achieved.

Copper Ohmic Contact on n-type SiC Semiconductor (탄화규소 반도체의 구리 오옴성 접촉)

  • 조남인;정경화
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.29-33
    • /
    • 2003
  • Material and electrical properties of copper-based ohmic contacts on n-type 4H-SiC were investigated for the effects of the post-annealing and the metal covering conditions. The ohmic contacts were prepared by sequential sputtering of Cu and Si layers on SiC substrate. The post-annealing treatment was performed using RTP (rapid thermal process) in vacuum and reduction ambient. The specific contact resistivity ($p_{c}$), sheet resistance ($R_{s}$), contact resistance ($R_{c}$), transfer length ($L_{T}$), were calculated from resistance (RT) versus contact spacing (d) measurements obtained from TLM (transmission line method) structure. The best result of the specific contact resistivity was obtained for the sample annealed in the reduction ambient as $p_{c}= 1.0 \times 10^{-6}\Omega \textrm{cm}^2$. The material properties of the copper contacts were also examined by using XRD. The results showed that copper silicide was formed on SiC as a result of intermixing Cu and Si layer.

  • PDF

High Temperature Ohmic Contacts to Monocrystalline $\beta$-SiC Thin Film Using Nitride Thin Films (질화물 박막을 이용한 단결정 $\beta$-SiC의 고온 ohmic 접촉 연구)

  • Choe, Yeon-Sik;Na, Hun-Ju;Jeong, Jae-Gyeong;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Refractory metals, W and Ti, and their nitrides, $W_2N$ and TiN, were investigated for using as an ohmic contact material with SiC single crystalline thin films. The possibility of nitride materials for using as a stable ohmic contact material of SiC at high temperatures was examined by considering the thermal stability depending on the heat treatment temperature, their electrical properties and protective behavior from the interdiffusion. W contact with SiC thin films, deposited by using new organosilicon precursor, bis-trimethylsilylmethane, showed the lowest resistivity, $2.17{\times}10^{-5}$$\textrm{cm}^2$. On the other hand, Ti-based contact materials showed higher contact resistivity than W-based ones. The oxidation of contact materials was restricted by applying Pt thin films on those electrodes. Nitride electrodes had rather stable electrical properties and better protective behavior from interdiffusion than metal electrodes.

  • PDF

Formation of Ohmic Contacts on acceptor ion implanted 4H-SiC (이온 이온주입한 p-type 4H-SiC에의 오믹 접촉 형성)

  • Bahng, W.;Song, G.H.;Kim, H.W.;Seo, K.S.;Kim, S.C.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.290-293
    • /
    • 2003
  • Ohmic contact characteristics of Al ion implanted n-type SiC wafer were investigated. Al ions implanted with high dose to obtain the final concentration of $5{\times}10^{19}/cm^3$, then annealed at high temperature. Firstly, B ion ion implanted p-well region were formed which is needed for fabrication of SiC devices such as DIMOSFET and un diode. Secondly, Al implanted high dose region for ohmic contact were formed. After ion implantation, the samples were annealed at high temperature up to $1600^{\circ}C\;and\;1700^{\circ}C$ for 30 min in order to activate the implanted ions electrically. Both the inear TLM and circular TLM method were used for characterization. Ni/Ti metal layer was used for contact metal which is widely used in fabrication of ohmic contacts for n-type SiC. The metal layer was deposited by using RF sputtering and rapid thermal annealed at $950^{\circ}C$ for 90sec. Good ohmic contact characteristics could be obtained regardless of measuring methods. The measured specific contact resistivity for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$ were $1.8{\times}10^{-3}{\Omega}cm^2$, $5.6{\times}10^{-5}{\Omega}cm^2$, respectively. Using the same metal and same process of the ohmic contacts in n-type SiC, it is found possible to make a good ohmic contacts to p-type SiC. It is very helpful for fabricating a integrated SiC devices. In addition, we obtained that the ratio of the electrically activated ions to the implanted Al ions were 10% and 60% for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$, respectively.

  • PDF

Effect of wettability of gypsum materials and rubber impression material on the marginal fitness of zirconia copings (석고 모형재와 고무인상재의 젖음성이 지르코니아 코핑의 변연적합도에 미치는 영향)

  • Kim, Won-Young;Chung, In-Sung;Jeon, Byung-Wook
    • Journal of Technologic Dentistry
    • /
    • v.38 no.4
    • /
    • pp.255-262
    • /
    • 2016
  • Purpose: This study examined the effect of wettability of gypsum materials and rubber impression material on the marginal fitness of zirconia copings. Methods: Three commercially available gypsum materials(Fugirock EP, Snow Rock, Tuff Rock) and three zirconia blocks(iJAM Emerald, LUXEN Smile block, ICE Zirkon transluzent) were studied. The zirconia copings were fabricated by using dental CAD/CAM system. Contact angles on the impression materials were measured with contact angle measuring device. Silicone replica method was used to measure the marginal fitness and cutting was performed on the bucco-lingual and mesio-distal sides. It were observed with a stereomicroscope at °ø40 magnification. The data were statistically analyzed with One-way ANOVA. Results: Mean values of contact angles were $58.3{\pm}0.7^{\circ}$ for Tuff Rock, $77.5{\pm}0.5^{\circ}$ for Fugirock EP and $87.8{\pm}0.5^{\circ}$ for Snow Rock and the difference between them was statistically significant(p<0.05). The smallest values of marginal fitness for the JF groups were $30.7{\pm}3.0{\mu}m$ for bucco-lingual direction, $29.3{\pm}3.0{\mu}m$ for mesio-distal direction. One-way ANOVA showed statistically significant difference between groups for marginal fitness(p<0.05). Conclusion: Tuff rock gypsum material had superior wettability to others. The mean marginal fitness of the Tuff rock gypsum material group were significantly better than other groups. Thus they can be also expected to show clinically satisfactory marginal fitness.

Experimental Study on the Direct Contact Thermal Screw Drying of Sawdust for Wood-Pellet Fuel

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.23-28
    • /
    • 2007
  • Wood fuel must be dried before combustion to minimize the energy loss. Sawdust of Japanese red pine was dried in a direct contact thermal screw dryer to investigate the drying characteristics of sawdust as a raw material for bio-fuel. Average drying rate and energy efficiency was 1.4%/min and 69.23% at $100^{\circ}C$, respectively, and those at $120^{\circ}C$ was 2.1%/min and 71.03%, respectively.

Spherical Particles Formation in Lubricated Sliding Contact -Micro-explosion due to the Thermally-activated Wear Process-

  • Kwon, O.K.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The mechanism of various spherical particles formation from wide range of tribo-systerns is suggested and deduced by the action of micro-explosion on the basis of the thermally-activated wear theory, in which the flash temperature at contact could be reached clearly upto the material molten temperature due to the secondary activation energy from the exothermic reactions involving lubricant thermo-decomposition, metals oxidation, hydrogen reactions and other possible complex thermo-reactions at the contacts. Various shapes of spherical particles generated from the tribosystem can be explained by the toroidal action of micro-explosion accompanied with the complex thermo-chemical reactions at the contact surfaces or sub-surfaces.

2 Dimensional Modeling of Centerless Grinding -Interference Phenomena-

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.32-38
    • /
    • 2003
  • An analytical model of the interference phenomena in the centerless grinding process is developed to investigate their effects on the roundness profile of a centerless ground workpiece. In this work, the regulating wheel and work-rest blade interferences are modeled as a single point contact. The grinding wheel interference is modeled as multiple points contact because material removal is determined by the duration of contact. The computer simulation results show good agreement with the experimental data. From this work, the existence and effects of the interference phenomena in the centerless grinding process are found.

A study on Contact force of Rubber Seal for wheel bearing (휠베어링 고무 실의 접촉력에 관한 연구)

  • Choi No Jin;Hur Young Min;Lee Kwang O;Kang Sung Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.145-151
    • /
    • 2006
  • Wheel bearing unit has been exclusively applied to car wheel supporting device. The seal for wheel bearing is required to have both high sealing effects and low reaction forces because wheel bearing are operated on adverse environmental conditions such as mud and splash water. High sealing effects are for the protection of bearing ball wear from dust influx. In order to ensure high sealing effects, it is a easiest way to increase contact force which are affected by geometric characteristics, material properties and interferences between seal and inner bearing but induces higher wear phenomena. Interferences in all variables are most important factor to determine the performance of wheel bearing. In this study, optimization of interference amount was performed with finite element analysis with commercial code ABAQUS. For the sake of finite element analysis, tensile tests of rubber material were conducted and governing equation of nonlinear behavior was achieved. Hock-up bearing was manufactured with optimized interference amount. Results of torque and mud spray tests using this bearing unit are performed. Less torque and moisture influx of bearing with optimized interference amount is evidence to validity of this study.