• Title/Summary/Keyword: Contact Load

Search Result 1,209, Processing Time 0.026 seconds

Measurement and Design Review of Contact Force by Garter Spring in Connection between Circuit Breaker and Bus Bar (차단기와 모선과의 연결시 가터스프링에 의한 접촉력의 측정 및 설계 고찰)

  • 조상순;안길영;박우진;오일성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.942-945
    • /
    • 2002
  • A garter spring, which is a long. special, close-coiled extension spring with its ends joined to form a ring, is used in connection between vacuum circuit breaker and bus bar in switchgear. To carry short-time current and resist welding at the contact surface in the connection, the garter spring must transmits an uniform contact force to the contact surface through the contact chips arranged in the circumference of bus bar. In this paper, the system for measurement of the contact force by the garter spring is developed. Using the developed measurement system, the design of the connection structure including the garter spring is reviewed to obtain the uniform contact forces in all of contact chips.

  • PDF

An Analysis of the Contact Problem between Mating Involute Gear Teeth Using Finite Element Method (有限要素法을 이용한 齒車의 接觸 應力 解析)

  • 이대희;최동훈;임장근;윤갑영
    • Tribology and Lubricants
    • /
    • v.4 no.2
    • /
    • pp.28-35
    • /
    • 1988
  • A general and efficient algorithm is proposed for the analysis of the frictionless elastic contact problems. It utilizes a simplex-type algorithm with a modified entry rule and incoporates finite element method to obtain flexibility matrices. The algorithmic solution is compared with the Hertzian solution for the contact problem between two cylinders to prove its accuracy and the contact problem between pin and piston rod is solved and compared with the numerical results of Frankavilla and Zienkiewicz to demonstrate the generality and effectiveness of the suggested algorithm. The contact problem between mating involute gear teeth at the worst load position is considered. The computed contact stress is smaller than the result of Hertz's theory applied to the contact between two kinematically equivalent discs and the contact area is larger than that of Hertz's theory.

A Study on the Fracture Behavior of Quartz Glass(II) (석영 유리의 파괴 거동에 관한 연구(II))

  • Choi, Seong-Dae;Cheong, Seon-Hwan;Kwon, Hyun-Kyu;Jeong, Young-Kwan;Hong, Yong-Bae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.213-219
    • /
    • 2007
  • Glass-to-metal contact should be prevented in the design of any structural glass component. Because glass is extremely brittle and will fracture readily if even a small point load is applied. If the assembly includes a glass component supported by metallic structure, designers should provide a pliable interface of some kind between the two parts. But there happens high demand of glass-to metal contact in semiconductor industries due to adoption of dry cleaning process as one of the good solution to reduce running cost - carry out equipments cleaning with high corrosive and etching gas such as CF4 with keeping process temperature as the same as high service temperature. Therefore the quartz glass have to be received compression by direct contact with metal as the form of weight itself and vacuum pressure and fatigue by vibrations caused by process during the process. In this paper investigation will be carried out on fracture behavior of quartz glass contacted with metal directly under local load and fatigue given by process vibration with apparatus which can give $lox{\backslash}cal$ load and vibration through PZT ceramics to give guideline to prevent unintended fracture of quartz glass.

  • PDF

Effect of Thermal Contact Resistance on Transient Thermoelastic Contact for an Elastic Foundation (탄성기반에서 과도 열탄성 접촉에 대한 열 접촉 저항의 영향)

  • Jang Yong-Hoon;Lee Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.833-840
    • /
    • 2006
  • The paper presents a numerical solution to the problem of a hot rigid indenter sliding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed, regardless of the thermal contact resistance. However the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady state, the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient, the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger numbers of small contact areas are established, unlit eventually the accuracy of the algorithm is limited by the discretization used.

Friction Transition Diagram Considering the Effects of Oxide Layer Formed on Contact Parts of TiN Coated Ball and Steel Disk in Sliding (미끄럼운동시 TiN코팅볼과 스틸디스크의 미끄럼접촉면에 형성되는 산화막의 영향을 고려한 마찰천이선도 작성에 대한 연구)

  • Cho, Chung-Woo;Park, Dong-Shin;Lee, Young-Ze
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.335-342
    • /
    • 2003
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk in sliding are investigated. Also wear mechanism to from the oxide layer and the characteristics of the oxide layer formation are investigated. AISI 52100 steel ball is used for the substrate of coated ball specimens. Two types of coated ball specimens were prepared by depositing TiN coating with 1 and 4 ${\mu}{\textrm}{m}$ in coating thickness. AISI 1045 steel is used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of the two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. And to study the effects of surface roughness of counter-body, TiN coating thickness and contact load of sliding test on the characteristics of oxide layer formation on counter-body, various tests were carried out. From the results, the friction characteristics between the two materials was predominated by iron oxide layer that formed on wear track on counter-body and this layer caused the high friction. And the formation rate of the oxide layer on wear track increased as the real contact area between the two materials increased as the contact load increased, the TiN coating thickness decreased and the surface of counter-body smoothened.

Friction transition diagram considering the effects of oxide layer formed on contact parts of TiN coated ball and steel disk in sliding (TiN코팅된 볼과 스틸디스크의 미끄럼운동 시 접촉면에 형성되는 산화막의 영향을 고려한 마찰천이선도 작성에 대한 연구)

  • 조정우;박동신;임정순;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.109-116
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk in sliding are investigated. Also wear mechanism to form the oxide layer and the characteristics of the oxide layer formation are investigated. AIS152100 steel ball is used for the substrate of coated ball specimens. Two types of coated ball specimens were prepared by depositing TiN coating with 1 and 4um in coating thickness. AISI1045 steel is used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of the two materials, the tests were performed both in ambient for forming oxide layer on the contact parts and in nitride environment to avoid oxidation. And to study the effects of surface roughness of counter-body, TiN coating thickness and contact load of sliding test on the characteristics of oxide layer formation on counter-body, various tests were carried out. From the results, the friction characteristics between the two materials was predominated by iron oxide layer that formed on wear track on counter-body and this layer caused the high friction. And the formation rate of the oxide layer on wear track increased as the real contact area between the two materials increased as the contact load increased, the TiN coating thickness decreased and the surface of counter-body smoothened.

  • PDF

EXPERIMENTAL STUDIES OF SCUFFING MECHANISM IN OIL LUBRICATED PISTON-RING/CYLINDER SLIDING CONTACTS

  • Shi, H.S.;Wang, H.;Hu, Y.Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.415-416
    • /
    • 2002
  • Experiments have been conducted to investigate scuffing mechanism in oil lubricated piston-ring /cylinder sliding contacts. Samples were extracted from actual components to simulate the real contact geometry and other influencing conditions. A standard test machine. with some modifications, has been used for the investigation of the effects of surface temperature load and sliding velocity. preliminary tests were carried out to find the critical temperature of scuffing using gradient temperature under a constant load, reciprocating frequency and stroke. The experimental and analytical results show that a transition from lubricated contact to adhesion, accompanied by the phenomena such as material transfer between the two sliding surfaces, local contact welding and temperature rise, and sharp increase in friction coefficient, appears to contribute to the final failure of scuffing.

  • PDF

J-integral for subsurface crack in circular plate with inner hole under rolling and sliding contact (구름 및 미끄럼 접촉하의 중공원판의 표면하층균열에 대한 J-적분)

  • Lee, Kang-Yong;Kim, June-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1149-1155
    • /
    • 1997
  • J-integral for a subsurface horizontal crack in a circular plate with an inner hole under rolling line contact is evaluated according to loading positions with various load conditions, crack length and crack location. Two-dimensional crack is modeled, and the relation between Tresca stress for uncracked model and J-integral is discussed. The loading location which gives the maximum J-integral depends on load condition and crack location, and the presence of friction force increases Tresca stress and J-integral near the surface. Regardless of friction force, crack location that gives maximum J-integral is the same as that of maximum Tresca stress in an uncracked model, and the value of J-integral is propotional to crack length. It is also showed that the variation of an inner radius of a disk does not effect J-integral value.

Tooth Load Sharing and Deformation Overlap of Helical Gear Pairs for the Manual Transmission of Automobile (수동변속기 헬리컬 기어치의 접촉력 평가를 통한 변형간섭 해석)

  • 박수진;유완석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.190-196
    • /
    • 2003
  • The load sharing and teeth deflection of helical gear system are analyzed to investigate the deformation overlap. The deformation overlap, which is calculated by the results of displacement analysis, is suggested as the basis for the tooth profile modification. Helical gear systems are formulated as contact problems, and solved by elastic contact theory and FEM. The developed computer program, which offers gear teeth deflection and deformation overlap, will be of much help to the improved design of manual transmissions for automobiles.

Study on the fatigue Limit at Random Contact Loading (불규칙 접촉하중에서의 피로한도에 관한 연구)

  • Ok, Young-Gu;An, Deuk-Man;Cho, Yong-Ju;Lee, Hyun-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.84-91
    • /
    • 2002
  • This paper analyzes the subsurface stress at the spherical contact using Hamilton equation, and with that data, calculates the fatigue limit under the variations of friction coefficient using fatigue theory. After rough surface being made, this paper figures out the random load generated by contacting to the rough surface, analyzes the stress of its subsurface, and calculates the fatigue limit of the rough surface using fatigue theory. The three parts of the fatigue theory are applied, which are critical plane theory, stress invariant theory and mesoscopic theory.