• Title/Summary/Keyword: Contact Crack

Search Result 344, Processing Time 0.025 seconds

Evaluation of Rolling Contact Fatigue Evaluation of Wheel for High Speed Train Using a Scan Type Magnetic Camera (자기카메라에 의한 고속철도 차륜의 구름접촉 피로평가)

  • Hwang, Ji-Seong;Kwon, Seok-Jin;Lee, Jin-Yi;Seo, Jung-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.957-965
    • /
    • 2011
  • Recently, railway industry has been developed not only functional parts such as acceleration and high performance of the railway but also emotional parts such as improved ride comfort and blocking noise. However, some important components of railway such as wheel and rail always had exposed too much operation time, cyclic load and rolling contact directly. The variations of load, vibration and chemical compositions were caused of wheel and rail having a lot of different types of contact fatigue damages. Therefore, It is necessary to improve inspection and maintenance technology in order to ensure safety and reliability of railway. Many researchers have already been reported the technology. Magnetic camera, one of the non-destructive testing technique can be used to inspect and evaluate the changes of magnetic field in ferromagnetic and paramagnetic materials with cracks. When an electromagnetic is applied to a specimen, a magnetic field will be distorted around a crack on the specimen. In present paper, the distribution of magnetic property in wheel with cracks using magnetic camera had investigated. The crack can be detected and evaluated by distribution analysis of magnetic field. The magnetic camera technique can be detected and evaluated the crack by rolling contact fatigue.

  • PDF

Consideration of the Frictional Force on the Crack Surface and Its Implications for Durability of Tires

  • Park, K.S.;Kim, T.W.;Jeong, H.Y.;Kim, S.N.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2159-2167
    • /
    • 2006
  • In order to find out a physical quantity which controls the fatigue life of a structure and to predict the fatigue life of tires, a finite element simulation methodology to use the cracking energy density (CED) and the virtual crack closure technique (VCCT) was proposed and applied to three different tires of a similar size. CED was calculated to predict the location of a crack initiation, and VCCT was used to obtain the strain energy release rate (SERR) at the tip of an initiated crack. Finite element simulations showed that SERR oscillated in the circumferential direction with its minimum occurring just before the contact zone and its maximum occurring just after the center of the contact zone, and SERR was affected significantly by the frictional force acting on the crack surface. In addition, a durability test was conducted to measure the fatigue life of the three tires. The comparison of SERR values with the test data revealed that the fatigue life increased as the amplitude of SERR decreased or as the R-ratio of SERR increased.

Mutual Interference of Two Surface Cracks under Hertzian Contact Loading (Hertz 접촉하중하에서의 복수표면균열의 상호간섭)

  • Kim, Sang-Woo;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3048-3057
    • /
    • 1996
  • Analysis model containing two inclined surface cracks on semi-infinite elastic body is established and analyzed on the basis of linear fracture mechanics to examine mutual interference of two surface cracks. Muskhelishvili's complex stress functions are introduced and a set of singular integral equations is obtained for a dislocation density function. The stress intensity factors at crack tip are obtained by using the Gerasoulis'method. When two surface cracks are parallel and have the same length, the values of $K_1$and $\Delta K_11$(variation of $K_11$) for crack 1 and crack 2 decrease by the mutual interference of two surface cracks as the distance between the two surface cracks shortens. The effect of mutual interference is remarkable in high friction coefficient. In case that two surface cracks are parallel, the values of $K_1$and $\Delta K_11$for crack 2 decrease as the length ratio ot crack 2 to crack 1 becomes small. As the crack inclination angle rises, the value of $K_1$ and the mutual interference of $K_1$for crack 2 increase and the value of$\Delta K_11$ for crack 1 becomes smaller than that for crack 2.

Effect of Elastic/Plastic Mismatch on the Contact Crack Initiation in Asymmetric Layered Composite (층상형 비대칭성 복합재료의 탄성/소성 불일치가 접촉 균열의 개시에 미치는 영향)

  • Kim, Sang-Kyum;Lee, Kee-Sung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.195-198
    • /
    • 2005
  • The role of elastic/plastic mismatch on the contact crack initiation is investigated for designing desirable surface-coated asymmetric layered composites. Various layered composites such as $Si_3N_4$ ceramics on $Si_3N_4+BN$ composite, soda-lime glass on various substrates with different elastic modulus for the analysis. Spherical indentation is conducted for producing contact cracks from the surface or interface between the coating and the substrate layer. A finite element analysis of the stress fields in the loaded layer composites enables a direct correlation between the damage patterns and the stress distributions. Implications of these conclusions concerning the design of asymmetric layered composites indicate that the elastic modulus mismatch is one of the important parameter for designing layered composite to prevent the initiation of contact cracks.

  • PDF

The contact fatigue life estimation between Rough surfaces by using mesoscopic fatigue criterion (Mesoscopic 피로이론을 이용한 거친 표면의 접촉피로 수명예측)

  • Chu Hyojun;Kim Taewan;Lee Sangdon;Cho Youngjoo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.53-59
    • /
    • 2004
  • Rough surfaces are taking into account to estimate the contact fatigue life. A computational methodology and the theoretical basis in this case is presented in this paper. Displacement solution technique by Cho and Love is applied to calculate the stress history beneath the surface subjected to loading. Mesoscopic multiaxial fatigue criterion is then applied to predict fatigue life. This fatigue criterion yields satisfactory results for non-proportional loading and can satisfactorily describe the physical mechanisms of crack initiation as well. As a result of analysis the relation between the life and the roughness as well as the most probable depth of the crack nucleation is discussed.

  • PDF

Evaluation of Micro Crack Using Nonlinear Acoustic Effect (초음파의 비선형 특성을 이용한 미세균열 평가)

  • Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.352-357
    • /
    • 2008
  • The detection of micro cracks in materials at the early stage of fracture is important in many structural safety assurance problems. The nonlinear ultrasonic technique (NUT) has been considered as a positive method for this, since it is more sensitive to micro crack than conventional linear ultrasonic methods. The basic principle is that the waveform is distorted by nonlinear stress-displacement relationship on the crack interface when the ultrasonic wave transmits through, and resultantly higher order harmonics are generated. This phenomenon is called the contact acoustic nonlinearity (CAN). The purpose of this paper is to prove the applicability of CAN experimentally by detection of micro fatigue crack artificailly initiated in Aluminum specimen. For this, we prepared fatigue specimens of Al6061 material with V-notch to initiate the crack, and the amplitude of second order harmonic was measured by scanning along the crack direction. From the results, we could see that the harmonic amplitude had good correlation with COD and it can be used to detect the crack depth in more accurately than the common 6 dB drop echo method.

Imaging of Harmonic Wave Generated by Contact Acoustic Nonlinearity in Obliquely Incident Ultrasonic Wave (경사입사 초음파에서 계면 접촉 음향 비선형성에 의해 발생한 고조파의 영상화)

  • Yun, Dong-Seok;Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.362-368
    • /
    • 2012
  • The objective of this study is to image the harmonic wave generated by contact acoustic nonlinearity in obliquely incident ultrasonic wave for early detection of closed cracks. A closed crack has been simulated by contacting two aluminum block specimens producing solid-solid contact interfaces and then acoustic nonlinearity has been imaged with contact pressure. Sampling phased array(SPA) and synthetic aperture focusing technique(SAFT) are used for imaging techniques. The amplitude of the fundamental frequency decreased with appling pressure. But, the amplitude of second harmonic increased with pressure and was a maximum amplitude at the simulation point of closed crack. Then, the amplitude of second harmonic decreased. As a result, harmonic imaging of contact acoustic nonlinearity is possible and it is expected to be apply for early detection of initial cracks.

Study on Non-contact Detection of Surface Cracks of the Metals Using an Open-Ended Coaxial Line Sensor at X-band (마이크로파 X-밴드에서의 종단 개방 동축선 센서를 이용한 금속표면균열의 비접촉 검출 연구)

  • Yang, Seung-Hwan;Kim, Dong-Seok;Kim, Ki-Bok;Kim, Jong-Heon;Kang, Jin-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.192-197
    • /
    • 2012
  • In this paper, a non-contact microwave technique was presented to detect the surface crack of the metals. An open-ended coaxial cable line was used as a sensor at 11 GHz, and the reflection coefficients were measured by scanning along the metal surface including artificial surface cracks. A parameter, the K value which was defined as the difference between maximum and minimum reflection coefficients, was measured and used to estimate the crack depth. A linear relationship between the K value and crack depth was found. This study showed that non-contact detection of the surface cracks of metals is possible using the open-ended coaxial line sensor at X-band.

Experimental Study on Fatigue Crack Initiation and Propagation due to Fretting Damage in Press-fitted Shaft (압입축에 발생하는 프레팅 피로균열 발생 및 진전 특성 실험)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.701-709
    • /
    • 2007
  • To clarify the characteristics of surface damage due to fretting in press-fitted shaft, experimental methods were applied to small scale specimen with different bending load condition. Fatigue tests and interrupted fatigue tests of press-fitted specimen were carried out by rotate bending fatigue test. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that small fatigue cracks are nucleated early in life regardless of bending stress, and thus the most portion of fatigue life on press fits can be considered to be crack propagation process. Most of surface cracks are initiated near the contact edge, and multiple cracks are nucleated and interconnected. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. It is thus suggested that the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in press fits.