• Title/Summary/Keyword: Contact Characteristics

Search Result 3,325, Processing Time 0.034 seconds

Analysis of Communication Characteristics on Contact wire and Messenger wire of Electric Railroad for Power Line Communication (전기 철도의 전력선 통신을 위한 전차선과 조가선의 통신 특성 분석)

  • Lee, Hui-Jun;Ahn, Seung-Ho;Kang, Seung-Wook;Lee, Jong-Gu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.157-162
    • /
    • 2010
  • Power line communication, using 25[kV] high voltage of railway catenary, is to provide information which is real-time safety information for train operations and train workers in driving. Lots of noise were occupied in the contact wire by electrical and communication equipments. A signal attenuation was caused characteristics of the contact wire and messenger wire. For relaying communications to transmit information using the contact wire, catenary the noise and signal attenuation were investigated. And the final goal of the study was realized to transmit video information by power line communication on electric railway.

Design of Switch Mechanism of Electric Contact Using Double Scotch Yoke Mechanism (이중 스카치 요크 기구를 이용한 접점 개폐 메커니즘의 설계)

  • Yang H.I.;Ahn K.Y.;Jeong K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.804-807
    • /
    • 2005
  • In this paper, a double scotch yoke mechanism for moving simultaneously the fixed contact and moving contact of a gas circuit brake, is proposed and designed to improve the breaking characteristics of the circuit breaker. Firstly, the design parameters of the scotch yoke are kinematically determined from the desired design condition of the circuit breaker. Next, the stroke curve of the moving contact is designed by considering the design parameter and the specified opening characteristics of electric contacts. Based on the scotch yoke and stroke curve, the dynamics of the electric contacts is analyzed using ADAMS model of switch mechanism.

  • PDF

3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Wheel and Axle When Excited by a Vertical Impact at the Center of Contact Patch (접지면 중앙에서 수직방향 가진에 의한 타이어의 3차원 진동모드가 휠/축에 미치는 영향)

  • Kim, Yong-Woo;Nam, Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.325-332
    • /
    • 2004
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire with ground contact are performed by impacting the tire in the radial direction at the center of contact patch. To investigate which modes of tire influence the vibration of wheel and axle when the tire is in contact with ground, the vibration characteristics such as frequency response functions, natural frequencies and their mode shapes from tire to wheel/axle are examined.

Performance Evaluation of Non-contact Atomic Force Microscopy Due to Vibration Characteristics of Cantilever (비접촉 원자간력 현미경의 탐침 외팔보 진동특성에 따른 성능 평가)

  • 박준기;권현규;홍성욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.263-268
    • /
    • 2003
  • This paper presents a result of performance evaluation fur non-contact scanning probe microscopy with respect to the vibration characteristics of cantilevers with tips. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made fur the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

  • PDF

Fabrication and Characteristics of Humidity Sensing Device using $TiO_2$ Sol ($TiO_2$ Sol을 이용한 습도감지소자의 제작 및 특성)

  • Kim, Jong-Taek;Lee, Baek-Su;Kim, Cheol-Su;Yu, Do-Hyeon;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.82-86
    • /
    • 2000
  • Humidity sensors using $TiO_2$ thin films were fabricated on the multi-electrode device by Sol-Gel method and their wettability, surface potential decays and humidity sensing characteristics were investigated. Contact angle of thin films was $28^{\cic}\;at\; 400^{\circ}C$ and surface potential decayed rapidly at $400^{\circ}C$. The specimen showed best humidity sensing characteristics at $400^{\circ}C$. From the results, they were confirmed that humidity sensing characteristics of thin films have connection with contact angle and surface potential decays.

  • PDF

Friction Transition Diagram Considering the Effects of Oxide Layer Formed on Contact Parts of TiN Coated Ball and Steel Disk in Sliding (미끄럼운동시 TiN코팅볼과 스틸디스크의 미끄럼접촉면에 형성되는 산화막의 영향을 고려한 마찰천이선도 작성에 대한 연구)

  • Cho, Chung-Woo;Park, Dong-Shin;Lee, Young-Ze
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.335-342
    • /
    • 2003
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk in sliding are investigated. Also wear mechanism to from the oxide layer and the characteristics of the oxide layer formation are investigated. AISI 52100 steel ball is used for the substrate of coated ball specimens. Two types of coated ball specimens were prepared by depositing TiN coating with 1 and 4 ${\mu}{\textrm}{m}$ in coating thickness. AISI 1045 steel is used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of the two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. And to study the effects of surface roughness of counter-body, TiN coating thickness and contact load of sliding test on the characteristics of oxide layer formation on counter-body, various tests were carried out. From the results, the friction characteristics between the two materials was predominated by iron oxide layer that formed on wear track on counter-body and this layer caused the high friction. And the formation rate of the oxide layer on wear track increased as the real contact area between the two materials increased as the contact load increased, the TiN coating thickness decreased and the surface of counter-body smoothened.

Friction transition diagram considering the effects of oxide layer formed on contact parts of TiN coated ball and steel disk in sliding (TiN코팅된 볼과 스틸디스크의 미끄럼운동 시 접촉면에 형성되는 산화막의 영향을 고려한 마찰천이선도 작성에 대한 연구)

  • 조정우;박동신;임정순;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.109-116
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk in sliding are investigated. Also wear mechanism to form the oxide layer and the characteristics of the oxide layer formation are investigated. AIS152100 steel ball is used for the substrate of coated ball specimens. Two types of coated ball specimens were prepared by depositing TiN coating with 1 and 4um in coating thickness. AISI1045 steel is used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of the two materials, the tests were performed both in ambient for forming oxide layer on the contact parts and in nitride environment to avoid oxidation. And to study the effects of surface roughness of counter-body, TiN coating thickness and contact load of sliding test on the characteristics of oxide layer formation on counter-body, various tests were carried out. From the results, the friction characteristics between the two materials was predominated by iron oxide layer that formed on wear track on counter-body and this layer caused the high friction. And the formation rate of the oxide layer on wear track increased as the real contact area between the two materials increased as the contact load increased, the TiN coating thickness decreased and the surface of counter-body smoothened.

  • PDF

Effect of Thermal Contact Resistence on the Heat Transfer Characteristics of Air Flow around the Finned Micro-Channel Tube for MF Evaporator (Micro-Channel형 열교환기에 부착된 핀의 열접촉저항이 열전달 특성에 미치는 영향)

  • Park, Yong-Seok;Sung, Hong-Seok;Sung, Dong-Min;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.121-126
    • /
    • 2021
  • In this study, the effect of thermal contact resistance between pin-channel tubes on the heat transfer characteristics was analytically examined around the channel tubes with the pins attached to two consecutive arranged channel pipes. The numerical results showed that the heat transfer coefficient decreased geometrically as the thermal contact resistance increased, and the corresponding temperature change on the contact surface increased as the thermal contact resistance increased. The thinner the pin, the more pronounced the geometric drop in the heat transfer coefficient. It was confirmed that the higher the height of the pin, the higher was the heat transfer coefficient, however, the greater the size of the thermal contact resistance, the smaller was the heat transfer coefficient. It was found that the temperature change in the inner wall of the channel tube did not significantly affect the heat transfer characteristics owing to the thermal contact resistance. Furthermore, the velocity of air at the entrance of the channel tube was proportional to the heat transfer coefficient due to a decrease in the convective heat resistance corresponding to an increase in the flow rate.

Electrical Characteristics of Ti Self-Aligned Silicide Contact (Ti Self-Aligned Silicide를 이용한 Contact에서의 전기적 특성)

  • 이철진;허윤종;성영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.2
    • /
    • pp.170-177
    • /
    • 1992
  • Contact resistance and contact leakage current of the Al/TiSiS12T/Si system are investigated for NS0+T and PS0+T junctions. SALICIDE (Self Aligned Silicide) process was used to make the Al/TiSiS12T/Si system. Titanium disilicide is one of the most common silicides because of its thermal stability, ability to form selective formation and low resistivity. In this paper, RTA temperature effect and Junction implant dose effect were evaluated to characterize contact resistance and contact leakage current. The TiSiS12T contact resistance to NS0+T silicon is lower than that to PS0+T silicon, and TiSiS12T of contact leakage current to NS0+T silicon is lower than that to PS0+T silicon. Contact resistance and contact leakage current of the Al/TiSiS12T/Si system by this method were possible for VLSI application.

Contact Area-Dependent Electron Transport in Au/n-type Ge Schottky Junction

  • Kim, Hogyoung;Lee, Da Hye;Myung, Hye Seon
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.412-416
    • /
    • 2016
  • The electrical properties of Au/n-type Ge Schottky contacts with different contact areas were investigated using current-voltage (I-V) measurements. Analyses of the reverse bias current characteristics showed that the Poole-Frenkel effect became strong with decreasing contact area. The contribution of the perimeter current density to the total current density was found to increase with increasing reverse bias voltage. Fitting of the forward bias I-V characteristics by considering various transport models revealed that the tunneling current is dominant in the low forward bias region. The contributions of both the thermionic emission (TE) and the generation-recombination (GR) currents to the total current were similar regardless of the contact area, indicating that these currents mainly flow through the bulk region. In contrast, the contribution of the tunneling current to the total current increased with decreasing contact area. The largest $E_{00}$ value (related to tunneling probability) for the smallest contact area was associated with higher tunneling effect.