• Title/Summary/Keyword: Construction operation process

Search Result 596, Processing Time 0.023 seconds

A Study on the Computer­Aided Processing of Sentence­Logic Rule (문장논리규칙의 컴퓨터프로세싱을 위한 연구)

  • Kum, Kyo-young;Kim, Jeong-mi
    • Journal of Korean Philosophical Society
    • /
    • v.139
    • /
    • pp.1-21
    • /
    • 2016
  • To quickly and accurately grasp the consistency and the true/false of sentence description, we may require the help of a computer. It is thus necessary to research and quickly and accurately grasp the consistency and the true/false of sentence description by computer processing techniques. This requires research and planning for the whole study, namely a plan for the necessary tables and those of processing, and development of the table of the five logic rules. In future research, it will be necessary to create and develop the table of ten basic inference rules and the eleven kinds of derived inference rules, and it will be necessary to build a DB of those tables and the computer processing of sentence logic using server programming JSP and client programming JAVA over its foundation. In this paper we present the overall research plan in referring to the logic operation table, dividing the logic and inference rules, and preparing the listed process sequentially by dividing the combination of their use. These jobs are shown as a variable table and a symbol table, and in subsequent studies, will input a processing table and will perform the utilization of server programming JSP, client programming JAVA in the construction of subject/predicate part activated DB, and will prove the true/false of a sentence. In considering the table prepared in chapter 2 as a guide, chapter 3 shows the creation and development of the table of the five logic rules, i.e, The Rule of Double Negation, De Morgan's Rule, The Commutative Rule, The Associative Rule, and The Distributive Rule. These five logic rules are used in Propositional Calculus, Sentential Logic Calculus, and Statement Logic Calculus for sentence logic.

Introduction to Current Status and Researches for Rock Engineering of Finnish Geological Disposal of Spent Fuel (핀란드의 사용후핵연료 지층처분 현황 및 암반공학 관련 연구소개)

  • Hong, Suyeon;Kwon, Saeha;Min, Ki-Bok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.215-229
    • /
    • 2019
  • This technical note describes the current status of Finnish radioactive waste disposal project which started to construct the repository for spent nuclear waste for the first time in the world. Finland started operating nuclear power plant in 1977 and is currently operating four nuclear power plants. After detailed site surveys started in 1993, Olkiluoto was finally selected by the parliament of Finland as the site for geological disposal in 2001 followed by a construction license in 2015. If the operating license is approved by the government in the 2020s, it would be the world's first case of geological disposal. In ONKALO, a site-specific underground research facility at the site of Olkiluoto, various studies were conducted to verify the safety of the repository. Finland uses the KBS-3 disposal concept, and Korea considers a similar disposal concept because of similar rock formations. The entire process in Finland including the operation status of intermediate and low-level waste disposal, site investigation and selection stages, and the latest rock mechanics and hydrogeological studies in ONKALO are presented. Suggestions for the radioactive waste disposal in Korea is given based on the Finnish case.

Changes in sedimentary structure and elemental composition in the Nakdong Estuary, Korea (낙동강 하구역 퇴적구조 및 원소조성 변화에 관한 연구)

  • Kim, Yunji;Kang, Jeongwon;Park, Seonyoung
    • Journal of Wetlands Research
    • /
    • v.23 no.3
    • /
    • pp.213-223
    • /
    • 2021
  • To understand the sedimentary environment of Scirpus planiculmis habitat (Myeongji and Eulsuk tidal flats) in the Nakdong Estuary, this study analyzed the statistical parameters (sorting, skewness, and kurtosis) of grain size data and the major (Al, Fe, Mn, Mg, Ca, Na, K, Ti, and P), minor (Li, Sc, V, Cr, Co, Ni, Cu, Zn, Sr, Zr, Cs, Pb, Th, and U), and rare earth elements (REEs) in sediment cores. For Myeongji, the sediment structure of the upper part of the cores was poorly sorted, more finely skewed, and more leptokurtic due to construction of the West gate. By contrast, the Eulsuk cores all differed due to the contrasting floodgate operation patterns of the West and East gates. The linear discriminate function (LDF) results corresponded to the statistical parameters for grain size. At the Eulsuk tidal flat (sites ES05 and ES11), elemental distributions were representative of Al-, Fe- and Ca-associated profiles, in which the elements are largely controlled by the accumulation of their host minerals (such as Na- and K-aluminosilicate and ferromagnesium silicate) and heavy detrital minerals at the sites. Detrital minerals including the aluminosilicates are major factors in the elemental compositions at ES05, diluting the REE contents. However, clay minerals and Fe-oxyhydroxides, as well as REE-enriched heavy minerals, appeared to be controlling factors of the elemental composition at ES11. Therefore, the mineral fractionation process is important in determining the elemental composition during sedimentation, which reflects the depositional condition of riverine-saline water mixing at both sites.

Conditions for a Sustainable Cooperation Model of 'Local Government-University': Focusing on Case Studies Both in Domestic and Foreign (지속가능한 '지자체-대학' 협력모델의 조건: 국내외 사례연구를 중심으로)

  • Seyon Park;Kyonghwan Kim
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.337-357
    • /
    • 2023
  • Universities and local governments in Korea are simultaneously experiencing the difficulties of a decrease in the youth population and a decrease in the school-age population, and close cooperation between universities and local governments is urgently needed to solve this problem. Representative methods of such cooperation include the establishment of a regional innovation system and the theories of innovation clusters and triple helix models. In addition to these theories, the aim is to derive sustainable conditions for the local government-university cooperation model by examining various cases of cooperation at home and abroad. This is the purpose of this paper. In particular, through case studies of cooperation between local governments and universities at home and abroad, three types of models (job, education, and housing) were analyzed, and common conditions and requirements for sustainable cooperation were proposed. In order for cooperation between local governments and universities to continue and produce successful results, mutual benefit creation, infrastructure construction and operation appropriate for capabilities, flexibility, and mutual responsibility are necessary. Furthermore, a model that suits the capabilities of local governments and universities must be found, and in this process, the university's research capabilities and commercialization capabilities of research results are especially important. In addition, it is essential to establish a new cooperation system between local governments, universities, and the central government.

A Study on How to Build a User-centered·Field-oriented Ship-communication Test Environment(Living Lab) (사용자 중심의 선박통신 현장 시험 환경(Living Lab) 구축 방안 연구)

  • Sangjin JANG;Bu-Young KIM;Hyo-Jeong KIM;Si-Hwan LEE;Taehan SONG;Woo-Seong Shim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.394-400
    • /
    • 2023
  • Unlike advancements on land, the maritime industry has been slow to embrace new technologies, primarily due to user apprehension toward unproven innovations in the development process. The existing paradigm of technology development, marked by expert-oriented and laboratory-centric test environments, often leads to a stagnation of progress at the research stage, as the applicability of the technology remains uncertain. This study departed from the conventional research system and introduced a novel methodology known as a "living lab." This approach aimed to ensure applicability by actively involving field-oriented users throughout the entire lifecycle of technology development, encompassing planning, development, verification, and evaluation. The presentation of a plan for the construction and operation of such a living lab in this study is expected to contribute to establishing an efficient experimentation system for ships that can reflect user opinions in the future and to secure technology applicability in the maritime field.

Evaluation of Hydrogeological Characteristics of Deep-Depth Rock Aquifer in Volcanic Rock Area (화산암 지역 고심도 암반대수층 수리지질특성 평가)

  • Hangbok Lee;Chan Park;Junhyung Choi;Dae-Sung Cheon;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • In the field of high-level radioactive waste disposal targeting deep rock environments, hydraulic characteristic information serves as the most important key factor in selecting relevant disposal sites, detailed design of disposal facilities, derivation of optimal construction plans, and safety evaluation during operation. Since various rock types are mixed and distributed in a small area in Korea, it is important to conduct preliminary work to analyze the hydrogeological characteristics of rock aquifers for various rock types and compile the resulting data into a database. In this paper, we obtained hydraulic conductivity data, which is the most representative field hydraulic characteristic of a high-depth volcanic bedrock aquifer, and also analyzed and evaluated the field data. To acquire field data, we used a high-performance hydraulic testing system developed in-house and applied standardized test methods and investigation procedures. In the process of hydraulic characteristic data analysis, hydraulic conductivity values were obtained for each depth, and the pattern of groundwater flow through permeable rock joints located in the test section was also evaluated. It is expected that the series of data acquisition methods, procedures, and analysis results proposed in this report can be used to build a database of hydraulic characteristics data for high-depth rock aquifers in Korea. In addition, it is expected that it will play a role in improving technical know-how to be applied to research on hydraulic characteristic according to various bedrock types in the future.

A Study on Hydraulic Characteristics of Permeable Rock Fractures in Deep Rock Aquifer Using Geothermal Gradient and Pumping Test Data (지온경사와 양수시험 자료를 활용한 심부 암반대수층 투수성 암반균열의 수리특성 연구)

  • Hangbok Lee;Cholwoo Lee;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.312-329
    • /
    • 2024
  • In various underground research projects such as energy storage and development and radioactive waste disposal targeting deep underground, the characteristics of permeable rock fractures that serve as major pathway of groundwater flow in deep rock aquifer are considered as an important evaluation factor in the design, construction, and operation of research facilities. In Korea, there is little research and database on the location and hydraulic characteristics of permeable rock fractures and the pattern of groundwater flow patterns that may occur between fractures in deep rock boreholes. In this paper, the hydraulic characteristics of permeable rock fractures in deep rock aquifer were evaluated through the analysis of geothermal gradient and pumping test data. First, the deep geothermal distribution was identified through temperature logging, and the geothermal gradient was obtained through linear regression analysis using temperature data by depth. In addition, the hydraulic characteristics of the fractured rock were analyzed using outflow temperature obtained from pumping tests. Ultimately, the potential location and hydraulic characteristics of permeable rock fractures, as well as groundwater flow within the boreholes, were evaluated by integrating and analyzing the geophysical logging and hydraulic testing data. The process and results of the evaluation of deep permeable rock fractures proposed in this study are expected to serve as foundational data for the successful implementation of underground research projects targeting deep rock aquifers.

A study on an evaluation model for industrial information systems by industry sectors (업종별 특성을 고려한 기업정보화 성숙모형)

  • 진경수;임춘성;박찬권
    • Proceedings of the CALSEC Conference
    • /
    • 2002.01a
    • /
    • pp.86-106
    • /
    • 2002
  • Informatization is a process that corporation's external environmental factors and internal environmental factors influence as complex. is a phenomenon that appears via this process. To evaluate that informatization was propeled well or informatization level is high can be dangerous work extremely by only once-over-lightly some factors, organization information ability is superior or infrastructure is constructed well. Therefore, an evaluation for industrial information systems that consider corporation's external environment and internal environment configurationally and objective estimation through this is required in national dimension. This research sorted types of business using types of business classification of 2001 EIII(Evaluation Indices of Industrial Informatization) laying stress on corporation's product and product production process for reflecting various industrial classification. And we are dividing whole our country corporations by manufacture industry, the construction industry, distribution industry, service industry, banking industry 5 types of business. To see such classed types industry classification from consistent viewpoint, we saw them within new framework, purchase, operation, physical distribution, marketing and sale. service etc. laying stress on primary businesses except support businesses of planning, financial management etc. To draw special quality of business center from primary business of each types of business, we draw industry classification Key Capability that centers when plans corporation's corporate strategy and information strategy. And we deducted industrial classification key production business connected with industry classification Key Capability. After drawing an evaluation items for industrial information systems in informatization analysis viewpoint laying stress on drawn businesses. Finally we did Case Study by making out an evaluation for industrial information systems questionnaire that considers special quality of manufacturing industry. Through EIII that consider the industrial classification, we could know that it explains the corporation's purchase, production, distribution in general and detail.

  • PDF

Performance and Economic Analysis of Domestic Supercritical Coal-Fired Power Plant with Post-Combustion CO2 Capture Process (국내 초임계 석탄화력발전소에 연소 후 CO2 포집공정 설치 시 성능 및 경제성 평가)

  • Lee, Ji-Hyun;Kwak, No-Sang;Lee, In-Young;Jang, Kyung-Ryoung;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.365-370
    • /
    • 2012
  • In this study, Economic analysis of supercritical coal-fired power plant with $CO_2$ capture process was performed. For this purpose, chemical absorption method using amine solvent, which is commercially available and most suitable for existing thermal power plant, was studied. For the evaluation of the economic analysis of coal-fired power plant with post-combustion $CO_2$ capture process in Korea, energy penalty after $CO_2$ capture was calculated using the power equivalent factor suggested by Bolland et al. And the overnight cost of power plant (or cost of plant construction) and the operation cost reported by the IEA (International Energy Agency) were used. Based on chemical absorption method using a amine solvent and 3.31 GJ/$tonCO_2$ as a regeneration energy in the stripper, the net power efficiency was reduced from 41.0% (without $CO_2$ capture) to 31.6% (with $CO_2$ capture) and the levelized cost of electricity was increased from 45.5 USD/MWh (Reference case, without $CO_2$ capture) to 73.9 USD/MWh (With $CO_2$ capture) and the cost of $CO_2$ avoided was estimated as 41.3 USD/$tonCO_2$.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.