• Title/Summary/Keyword: Construction facility

Search Result 1,626, Processing Time 0.027 seconds

Ventilation Corridor Characteristics Analysis and Management Strategy to Improve Urban Thermal Environment - A Case Study of the Busan, South Korea - (도시 열환경 개선을 위한 바람길 특성 분석 및 관리 전략 - 부산광역시를 사례로 -)

  • Moon, Ho-Yeong;Kim, Dong-Pil;Gweon, Young-Dal;Park, Hyun-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.659-668
    • /
    • 2021
  • The purpose of this study is to propose a ventilation corridor management plan to improve the thermal environment for Busan Metropolitan City. To this end, the characteristics of hot and cool spots in Busan were identified by conducting spatial statistical analysis, and thermal image data from Landsat-7 satellites and major ventilation corridors were analyzed through WRF meteorological simulation. The results showed the areas requiring thermal environment improvement among hot spot areas were Busanjin-gu, Dongnae-gu, industrial areas in Yeonje-gu and Sasang-gu, and Busan Port piers in large-scale facilities. The main ventilation corridor was identified as Geumjeongsan Mountain-Baekyangsan Mountain-Gudeoksan Mountain Valley. Based on the results, the ventilation corridor management strategy is suggested as follows. Industrial facilities and the Busan Port area are factors that increase the air temperature and worsen the thermal environment of the surrounding area. Therefore, urban and architectural plans are required to reduce the facility's temperature and consider the ventilation corridor. Areas requiring ventilation corridor management were Mandeok-dong and Sajik-dong, and they should be managed to prevent further damage to the forests. Since large-scale, high-rise apartment complexes in areas adjacent to forests interfere with the flow of cold and fresh air generated by forests, the construction of high-rise apartment complexes near Geumjeongsan Mountain with the new redevelopment of Type 3 general residential area should be avoided. It is expected that the results of this study can be used as basic data for urban planning and environmental planning in response to climate change in Busan Metropolitan City.

A Study on the Flooding Risk Assessment of Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 침수 위험성 평가에 관한 연구)

  • Ryu, Seong-Reul
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • Purpose: For smooth performance of flood analysis due to heavy rain disasters at energy storage facilities in the Incheon area, field surveys, observational surveys, and pre-established reports and drawings were analyzed. Through the field survey, the characteristics of pipelines and rivers that have not been identified so far were investigated, and based on this, the input data of the SWMM model selected for inundation analysis was constructed. Method: In order to determine the critical duration through the probability flood analysis according to the calculation of the probability rainfall intensity by recurrence period and duration, it is necessary to calculate the probability rainfall intensity for an arbitrary duration by frequency, so the research results of the Ministry of Land, Transport and Maritime Affairs were utilized. Result: Based on this, the probability of rainfall by frequency and duration was extracted, the critical duration was determined through flood analysis, and the rainfall amount suggested in the disaster prevention performance target was applied to enable site safety review. Conclusion: The critical duration of the base was found to be a relatively short duration of 30 minutes due to the very gentle slope of the watershed. In general, if the critical duration is less than 30 minutes, even if flooding occurs, the scale of inundation is not large.

A Study on the Entry of the Domestic Cold Chain Industry into the UN Procurement Market (국내 콜드체인 산업의 유엔 조달시장 진출방안)

  • Shin, Seok-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.333-345
    • /
    • 2021
  • Amid the rapidly changing logistics environment and demand changes in the post-corona-19 era, the importance of the cold chain logistics sector is being highlighted. The scope of cold chain is not limited to food, but is expanding to various fields such as pharmaceuticals, semiconductors, and flowers. The demand on the storage and transportation of corona vaccines is rapidly increasing. The rapid increase in domestic low-temperature facility construction and renovation may lead to the saturation of the cold chain related industry in the future and slow growth. In preparation for this, it is necessary to accumulate infrastructure know-how using IT technologies, and to consider entering into the UN procurement market as a potential niche market, by taking advantage of Korea's recent global status. The demand for cold chain in the UN procurement market is increasing mainly in underdeveloped countries, and it is expected to continue to grow. In this paper, the capabilities of domestic cold chain related companies were analyzed, domestic and overseas cold chain logistics market trends and overseas market entry status were investigated. An in-depth survey was conducted to present strategies for domestic cold chain logistics related companies to enter the UN procurement market.

A Study on the Site Selection Method for the Creation of a Flood Buffer Section Considering the Nature-based Solution - Case Study from Upstream of Daecheong Dam to Downstream of Yongdam Dam (자연성기반기술의 홍수완충구간 조성을 위한 입지 선정 방법에 관한 연구 - 대청댐 상류부터 용담댐 하류구간 사례 연구)

  • Ji, Un;Jang, Eun-kyung;Bae, Inhyeok;Ahn, Myeonghui;Bae, Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.131-140
    • /
    • 2022
  • The magnitude and frequency of extreme floods are increasing owing to the effects of climate change. Therefore, multipurpose flood management techniques incorporating nature-based solutions have been introduced to mitigate the limitations of flood management and river design methods relying on existing observation data. Nature-based solutions to prepare for such extreme flooding events include ways to retreat the embankment, expand the floodplain, and reduce flood damage. To apply these technologies, adopting appropriate location selection methods based on various evaluation factors, such as flood damage reduction effects, sustainable ecological environments, river connectivity, and physical channel structure enhancements, should be prioritized. Therefore, in this study, the optimal location for implementing the multipurpose floodplain construction project was determined by selecting the location of the floodplain expansion with objectivity in the river waterfront area upstream of Daecheong Dam to downstream of Yongdam Dam. Through the final location determination, the Dongdaeje and Jeogokje sections were included in the optimal location considering both flood damage reduction and water environment improvement.

A Study on the Calculation of Dynamic Yellow Signal Time Based on Approach Speed and Collision Points (접근속도와 상충지점 기반 동적황색신호시간 산정 연구)

  • Hyunho Son;Sanghoon Sung;Choulki Lee;Hyeon Soo Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.14-34
    • /
    • 2023
  • The purpose of this study was to calculate the appropriate yellow-signal time for intersections, to find out the relationship between the approach speed and intersection width when calculating the time, and to secure safety by minimizing conflicts and dilemma sections in intersections that change according to the signal operation. For this purpose, 6,824 data points from 5 intersections were collected and analyzed. The main results of the study are as follows. First, the approach speed of individual vehicles in different lanes was analyzed, and the width of an intersection was defined by considering the conflict in each direction. Second, we developed a multiple regression model based on the approach speed and conflict points, which compensated for the problems of an existing formula. Third, a standard table is presented for applying the appropriate yellow-signal time according to the approach speed and intersection width based on a development formula. A method is also presented to determine the safety of the length of the dilemma according to the change in the yellow-light time by presenting a calculation table that can cross-analyze the yellow-signal time and a dilemma section using the relationship.

Comparison on the Performance of Soil Improvement in Thick Soft Ground Using Single-Core and Double-Core PBD (단일 및 이중 코어 PBD에 의한 대심도 연약지반 개량 효과에 관한 비교연구)

  • Yang, Jeong-Hun;Hong, Sung-Jin;Kim, Hyung-Sub;Lee, Woo-Jin;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.33-45
    • /
    • 2009
  • The conventional single-core PBDs have been widely used in order to accelerate consolidation settlement of soft grounds. When using the single-core PBD in a thick clay deposit, a delay of consolidation may occur due to high confining pressure in the thick deposit and necking of drains. This study is to compare the performances of soil improvement by the single-core and double-core PBD installed at a site in Busan New Port which exhibits approximately a 40m-thick clay layer. An in-situ test program was performed at the test site where a set of the double-core PBDs and single-core PBDs were installed to compare the efficiency of each drain. In addition, the discharge capacity of each PBD has been measured using the modified Delft Test. A series of laboratory tests for estimating in-situ soil properties have also been performed in order to obtain input parameters for a numerical program ILLICON. The discharge capacity of the double-core PBD is higher than that of the single-core PBD in the modified Delft Test. However it is observed from the comparative in-situ test and numerical analysis that there is no difference in the performance of ground improvement between the two drain systems. This discrepancy comes from the fact that the amount of water released during consolidation in most common field conditions is much smaller than the capacity of even the single core PBD. And thus, considering actual field conditions, it can be concluded that the single-core PBD has enough discharge capacity even in the thick clay deposit such as this test site.

A Study on the Status of Use and Value of 'Saemi' in Sacheon Alluvial Fan (사천 선상지 '새미'의 이용 실태 및 가치 고찰)

  • Kim, Dohyun;Jeong, Myeong Cheol;Seo, Ki Chun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.4
    • /
    • pp.85-95
    • /
    • 2022
  • This study is about the story of 'Saemi', existing in the Sacheon Alluvial fan area. Saemi is a local word for Dumbeong, which is the traditional water irrigation facilities in this area that could be formed according to the geographical characteristics of a Alluvial fan site. In the meantime, although Saemi has been an important source of water, related research has been mainly done from an ecological point of view. Accordingly, the researcher paid attention to the functional aspects of Saemi itself, grasped its location, distribution status, and usage including the construction method, and considered its intrinsic value through classification and characteristic analysis of Saemi. As a result of five field surveys from September 2021 to October 2022, 129 Saemies remained in the Sacheon alluvial fan area. According to the structure and shape, Saemi could be divided into basic type, complex type, and buried type. The basic type was subdivided into bucket-type and stairs-type along with the complex type, and the buried type was subdivided into all buried-type and some buried-type. Saemies were mainly distributed at the distal end of the Sacheon alluvial fan site, individual Saemies were built on farmland, and common Saemies were usually built along roadsides adjacent to villages. The reason why the Saemies are concentrated at the distal end is the geographical characteristics of the alluvial fan where the water underflows. Saemi was an important multifunctional water supply source equivalent to the main water source for people at the distal end of the pond who did not receive a stable supply of water from the reservoir. Saemi was at the center of the underground water irrigation network agricultural system in the Sacheon alluvial fan area according to the principles of 'bbaeim(drop out)' and 'gaepim(pooling)' It has provided a foundation for establishing itself as an appropriate technology in this area. Such Saemi contributed to the rural landscape and agricultural biodiversity through its own system and served as a public interest function. It is necessary to know, conserve, manage, and continuously utilize the value of this Saemi as an agricultural heritage.

Multi-objective Genetic Algorism Model for Determining an Optimal Capital Structure of Privately-Financed Infrastructure Projects (민간투자사업의 최적 자본구조 결정을 위한 다목적 유전자 알고리즘 모델에 관한 연구)

  • Yun, Sungmin;Han, Seung Heon;Kim, Du Yon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.107-117
    • /
    • 2008
  • Private financing is playing an increasing role in public infrastructure construction projects worldwide. However, private investors/operators are exposed to the financial risk of low profitability due to the inaccurate estimation of facility demand, operation income, maintenance costs, etc. From the operator's perspective, a sound and thorough financial feasibility study is required to establish the appropriate capital structure of a project. Operators tend to reduce the equity amount to minimize the level of risk exposure, while creditors persist to raise it, in an attempt to secure a sufficient level of financial involvement from the operators. Therefore, it is important for creditors and operators to reach an agreement for a balanced capital structure that synthetically considers both profitability and repayment capacity. This paper presents an optimal capital structure model for successful private infrastructure investment. This model finds the optimized point where the profitability is balanced with the repayment capacity, with the use of the concept of utility function and multi-objective GA (Generic Algorithm)-based optimization. A case study is presented to show the validity of the model and its verification. The research conclusions provide a proper capital structure for privately-financed infrastructure projects through a proposed multi-objective model.

Study on the Quantitative Analysis of the Major Environmental Effecting Factors for Selecting the Railway Route (철도노선선정에 영향을 미치는 주요환경항목 정량화에 관한 연구)

  • Kim, Dong-ki;Park, Yong-Gul;Jung, Woo-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.761-770
    • /
    • 2009
  • The energy efficiency and environment-friendly aspect of the railway system would be superior to other on-land ransportation systems. In a preliminary feasibility study stage and selection of optimal railway route, the energy efficiency and problems related to environment are usually considered. For the selection of optimal railway route, geographical features and facility of management are generally considered. Environment effect factors for the selection of environment-friendly railway router are focused and studied in this paper. In this study, various analysis of opinion of specialists (railway, environment, transport, urban planning, survey) and the guideline for construction of environment-friendly railway were accomplished. From these results of various analysis, 7 major categories (topography/geology, flora and fauna, Nature Property, air quality, water quality, noise/vibration, visual impact/cultural assets) were extracted. To select environment friendly railway route, many alternatives should be compared optimal route must be selected by a comprehensive assessment considering these 7 categories. To solve this problem, the selected method was AHP which simplifies the complex problems utilizing hierarchy, quantifying qualitative problems through 1:1 comparison, and extracting objective conclusions by maintaining consistency. As a result, a GUIbased program was developed which provides basic values of weighted parameters of each category defined by specialists, and a quantification of detailed assessment guidelines to ensures consistency.

Implementation of IoT-based carbon-neutral modular smart greenhouse (IoT 기반 탄소중립 모듈형 스마트 온실 구현)

  • Seok-Keun Park;Kil-Su Han;Min-Soon Lee;Changsun Shin
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.36-45
    • /
    • 2023
  • Recently, in digital agriculture, the types and utilization of greenhouses based on IoT are spreading, and greenhouses are being modernized, enlarged, and even factoryized using smart technology. However, a specific standardization plan has not been proposed according to the equipment for data collection in the smart greenhouse and the size or shape of the greenhouse. In other words, there is a lack of standard data for facility equipment, such as the type and number of sensors and equipment according to the size of the greenhouse, the type of greenhouse construction film and materials suitable for crops and carbon neutrality. Therefore, in this study, the suitability of the implementation, installation and quantity of IoT equipment for data collection was tested, and some standard technologies were presented through the implementation of data collection and communication methods. In addition, impact strength, tensile, tear, elongation, light transmittance, and lifespan issues for PE, PVC, and EVA, which account for about 90% of existing greenhouses, were presented, and the shape, size, and environmental problems of greenhouses made of films were presented. presented in the text. In this research paper, a standardized carbon-neutral modular smart greenhouse using nano-material film was implemented as a solution to environmental problems such as greenhouse size, farm crop type, greenhouse lifespan, and film, and its performance with existing greenhouses was analyzed and presented. Through this, we propose a modularized greenhouse that can be expanded or reduced freely without distinction in the size of the greenhouse or the shape of farmhouse crops, and the lifespan is extended and standardized. Finally, the average characteristics of greenhouses using existing PE, PVC, and EVA films and the characteristics of greenhouses using new carbon-neutral nanomaterials are compared and reviewed, and a plan to implement an expandable IoT greenhouse that supports carbon neutrality is proposed.