• Title/Summary/Keyword: Construction disaster

Search Result 1,484, Processing Time 0.023 seconds

Seismic Performance Evaluation of the Underground Utility Tunnel by Response Displacement Method and Response History Analysis (응답변위법과 응답이력해석법을 이용한 지중 공동구의 내진성능 평가)

  • Kwon, Ki-Yong;Lee, Jin-Sun;Kim, Yong-Kyu;Youn, Jun-Ung;Jeong, Soon-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.119-133
    • /
    • 2020
  • Underground utility tunnel, the most representative cut and cover structure, is subjected to seismic force by displacement of the surrounding soil. In 2020, Korea Infrastructure Safety Corporation has published "Seismic Performance Evaluation Guideline for Existing Utility Tunnel." This paper introduces two seismic evaluation methods, RDM (Response Displacement Method) and RHA (Response History Analysis) adopted in the guide and compares the methods for an example of an existing utility tunnel. The test tunnel had been constructed in 1988 and seismic design was not considered. RDM is performed by single and double cosine methods based on the velocity response spectrum at the base rock. RHA is performed by finite difference analysis that is able to consider nonlinear behavior of soil and structure together in two-dimensional plane strain condition. The utility tunnel shows elastic behavior for RDM, but shows plastic hinge for RHA under the collapse prevention level earthquake.

Implementation of Saemangeum Coastal Environmental Information System Using GIS (지리정보시스템을 이용한 새만금 해양환경정보시스템 구축)

  • Kim, Jin-Ah;Kim, Chang-Sik;Park, Jin-Ah
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.128-136
    • /
    • 2011
  • To monitor and predict the change of coastal environment according to the construction of Saemangeum sea dyke and the development of land reclamation, we have done real-time and periodic ocean observation and numerical simulation since 2002. Saemangeum coastal environmental data can be largely classified to marine meteorology, ocean physics and circulation, water quality, marine geology and marine ecosystem and each part of data has been generated continuously and accumulated over about 10 years. The collected coastal environmental data are huge amounts of heterogeneous dataset and have some characteristics of multi-dimension, multivariate and spatio-temporal distribution. Thus the implementation of information system possible to data collection, processing, management and service is necessary. In this study, through the implementation of Saemangeum coastal environmental information system using geographic information system, it enables the integral data collection and management and the data querying and analysis of enormous and high-complexity data through the design of intuitive and effective web user interface and scientific data visualization using statistical graphs and thematic cartography. Furthermore, through the quantitative analysis of trend changed over long-term by the geo-spatial analysis with geo- processing, it's being used as a tool for provide a scientific basis for sustainable development and decision support in Saemangeum coast. Moreover, for the effective web-based information service, multi-level map cache, multi-layer architecture and geospatial database were implemented together.

EIS monitoring on corroded reinforcing steel in cement mortar after calcium electro-deposition treatment (칼슘 전착처리 후, 시멘트 모르타르 속 철근의 부식속도에 대한 EIS 모니터링)

  • Kim, Je-Kyoung;Kee, Seong-Hoon;Yee, Jurng-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2019
  • The primary purposes of this study are to understand a fundamental effects of electro-deposition on reinforcing steel in saturated Ca(OH)2 electrolyte, and evaluate the corrosion rates of rebars under cyclic 3wt.%NaCl immersion and dry corrosion environment. The three cement mortar specimens with cover thickness 5, 10 and 30mm, were prepared in the experiment. To monitor the corrosion rates of rebars in mortar, the three cement mortar specimens were exposed to 110 wet-drying cycles(8-hour-immersion in 3wt.%NaCl and 16-hour-drying in a room temperature) in the laboratory. During the wet-dry cycles, the polarization resistance, Rp, and solution resistance, Rs, were continuously measured. The instantaneous corrosion rates of rebars on the effect of electro-depositing with sat. Ca(OH)2 electrolyte were estimated from obtained R-1p and degrees of wetness were estimated from Rs values. From the experimental results, the corrosion rates of rebars were greatly accelerated by wet/dry cycles. During the mortars exposed to drying condition, the large increases in the corrosion rates were showed at all rebar surfaces in three mortar specimen, attributed from the accelerated reduction rates of dissolved oxygen in drying process. However, the corrosion rates on rebar surface electrochemically deposited with sat. Ca(OH)2 electrolyte showed the clear decreases, caused by calcium deposits in the porous rust layer.

A Study on the Development of Facility Model for Safety Training Class in School (학교 내 안전체험교실의 시설모형 개발 연구)

  • Park, Sung-Chul;Ahn, Yoo-Jeong;Song, Byung-Joon;Cho, Jin-ll
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.16 no.2
    • /
    • pp.19-33
    • /
    • 2017
  • The purpose of this study is to derive education programs for safety training class, create unit spaces and present components and methods of utilizing the spaces for the development of facilities models closely related to various policy, operation plan and facility construction projects promoted by related institutions such as the Ministry of Education, schools, architects and companies. This study is divided into five steps. First, we reviewed the literature related basic directions for safety education and facility plan, second, field survey included both field conditions such as spatial size and facility configuration and analysis of operating conditions like hours of operation and personnel. Base on literature review and field survey, it were used to analyze strengths and weaknesses of existing safety training classes, and five facility models was developed based on the Delphi method and expert participatory design. The result show that the facility models (drafts) of safety training class were developed as follows: (1)the facility model for traffic safety(pedestrian safety, vehicle safety, subway safety) (2)the facility model for first aid(emergency rescue, how to report) (3)the facility model for disaster safety(fire evacuation safety, life earthquake safety) (4)the facility model for elevator safety(elevator safety, escalator safety) (5)the facility model for drugs and violence safety (smoking drinking, sexual harassment safety, food safety) The safety training class can be composed by combining or separating each module according to affordable space size of each school.

Data Acquisition using Terrestrial Laser Scanner and RTK-GPS for Implementation of Beach Model (해빈 모형 구현을 위한 지상용 레이저 스캐너와 RTK-GPS의 자료 획득)

  • Lee, Hyung-Seok;Kim, In-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.54-63
    • /
    • 2009
  • Various methods have been employed for acquiring beach surface data, which are used to monitor shoreline changes due to beach erosion. This study explores the possibility of constructing and implementing a surface model of beach using data acquired with a terrestrial laser scanner and RTK-GPS. Digital images and three-dimensional data of beach areas acquired at 20 cm intervals using a laser scanner were used to create a digital surface model covered with digital image. Seven months later, the beach area was surveyed using an RTK-GPS, and another beach model was constructed using the data collected with an accuracy of 1.9 cm. The use of a terrestrial laser scanner is expected to ensure acquisition of good quality results and help deal with seasonal changes in beach areas. Because readings obtained with the RTK-GPS are dependent on the number of sampling points in beach model, difficulties are encountered when fixing the survey points. However, RTK-GPS could be used to implement a three-dimensional model by correcting the hidden parts in images obtained using a terrestrial laser scanner. Therefore, an RTK-GPS and a terrestrial laser scanner can be used in combination to obtain more precise data for the construction of beach model data.

  • PDF

The Construction of GIS-based Flood Risk Area Layer Considering River Bight (하천 만곡부를 고려한 GIS 기반 침수지역 레이어 구축)

  • Lee, Geun-Sang;Yu, Byeong-Hyeok;Park, Jin-Hyeog;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Rapid visualization of flood area of downstream according to the dam effluent in flood season is very important in dam management works. Overlay zone of river bight should be removed to represent flood area efficiently based on flood stage which was modeled in river channels. This study applied drainage enforcement algorithm to visualize flood area considering river bight by coupling Coordinate Operation System for Flood control In Multi-reservoir (COSFIM) and Flood Wave routing model (FLDWAV). The drainage enforcement algorithm is a kind of interpolation which gives to advantage into hydrological process studies by removing spurious sinks of terrain in automatic drainage algorithm. This study presented mapping technique of flood area layer considering river bight in Namgang-Dam downstream, and developed system based on Arcobject component to execute this process automatically. Automatic extraction system of flood area layer could save time-consuming efficiently in flood inundation visualization work which was propelled based on large volume data. Also, flood area layer by coupling with IKONOS satellite image presented real information in flood disaster works.

  • PDF

DAD Analysis of Yongdam Dam Watershed Using the Cell-Based Automatic Rainfall Field Tracking Methods (격자기반의 자동 강우장 탐색기법을 활용한 용담댐 유역 DAD분석)

  • Song, Mi-Yeon;Jung, Kwan-Sue;Lee, Gi-Ha;Kim, Yeon-Su;Shin, Young-A
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.68-81
    • /
    • 2014
  • This study aims to apply and evaluate the automatic DAD analysis method, which is able to establish the depth-area relationship more efficiently and accurately for point-to-areal rainfall conversion. First, the proposed automatic DAD analysis method tracks the expansion route of area from the storm center, and it is divided into Box-tracking, Point-tracking, Advanced point-tracking according to tracking method. After applying the proposed methods to 10 events occurred in Yongdam-watershed area, we confirmed that the Advanced point-tracking method makes it possible to estimate the maximum average areal rainfal(MAAR) more accurately with consideration of the storm movement and the multi-centered storm. In addition, Advanced point-tracking could reduce the errors of the estimated MAAR induced by increasing the area because it can estimate MAAR for each storm center and compare them at the same time. Finally, the DAD curve for the study area could be derived based on the DAD analysis of the selected 10 events.

Large-Scale Slope Stability Analysis Using Climate Change Scenario (2): Analysis of Application Results (기후변화 시나리오를 이용한 광역 사면안정 해석(2): 결과분석)

  • Oh, Sung-Ryul;Lee, Gi-Ha;Choi, Byoung-Seub;Lee, Kun-Hyuk;Kwon, Hyun-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.1-19
    • /
    • 2014
  • This study aims to assess the slope stability variation of Jeonbuk drainage areas by RCM model outputs based on A1B climate change scenario and infinite slope stability model based on the previous research by Choi et al.(2013). For a large-scale slope stability analysis, we developed a GIS-based database regarding topographic, geologic and forestry parameters and also calculated daily maximum rainfall for the study period(1971~2100). Then, we assess slope stability variation of the 20 sub-catchments of Jeonbuk under the climate change scenario. The results show that the areal-average value of safety factor was estimated at 1.36(moderately stable) in spite of annual rainfall increase in the future. In addition, 7 sub-catchments became worse and 5 sub-catchments became better than the present period(1971~2000) in terms of safety factor in the future.

Selecting Aquifer Artificial Recharge Methods Based on Characteristics of the Target Aquifer (주입대상 대수층의 특성을 고려한 인공함양 방법 선정 연구)

  • Lee, Yeoung-Dong;Shin, Dong-Min;Kim, Byeong-Jun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.483-494
    • /
    • 2019
  • This study aimed to determine the extent of artificial aquifer recharge and to evaluate appropriate recharge techniques based on field investigations and comparative analysis of each recharge method. Characteristics of the aquifer determine the target aquifer and the recharge method for artificial groundwater recharge. Electrical conductivity surveys, drilling, permeability tests, and grain-size analysis indicate that the hydraulic conductivity of weathered soil and weathered rock is higher than that of upper unconsolidated soil. Pumping tests indicate that the groundwater level was stable at a depth of 12 m until 9 hours of pumping, but after that it dropped again, indicating anisotropic aquifer characteristics. Three types of artificial recharge method were reviewed, including recharge wells, ditches, and ponds, and a combination of two methods is proposed: a recharge well system directly injecting into weathered soil and rock sections with good permeability, and an injection ditch that can increase the recharge effect by line-type injection in the upstream area. The extent of groundwater recharge by the selected methods will be evaluated through on-site tests and if their applicability is verified, they will contribute to securing water in areas of water shortage.

The Relationship between Parameters of the SWAT Model and the Geomorphological Characteristics of a Watershed (SWAT 모형의 매개변수와 유역의 지형학적 특성 관계)

  • Lee, Woong Hee;Lee, Ji Haeng;Park, Ji Hun;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • The correlation relationships and their corresponding equations between the geomorphological parameters and the Soil Water Assessment Tool (SWAT) model parameters by Sequential Uncertainty Fitting - version 2 (SUFI-2) algorithm of SWAT Calibration and Uncertainty Programs (SWAT-CUP) were developed at the Seom-river experimental watershed. The parameters of the SWAT model at the Soksa-river experimental watershed were estimated by the developed equations. The SWAT model parameters were estimated by SUFI-2 algorithm of SWAT-CUP with rainfall-runoff data from the Soksa-river experimental watershed from 2000 to 2007. Rainfall-runoff simulation of the SWAT model was carried out at the Soksa-river experimental watershed from 2000 to 2007 for the applicability of the estimated parameters by the developed equations. The root mean square errors (RMSE) between the observed and the simulated rainfall-runoffs using the estimated parameters by developed equations of correlation analysis and the optimum parameters by SUFI-2 of SWAT-CUP were $1.09m^3/s$ and $0.93m^3/s$ respectively at the Soksa-river experimental watershed from 2000 to 2007. Therefore, it is considered that the parameter estimation of the SWAT model by the geomorphological characteristics parameters has applicability.