• Title/Summary/Keyword: Construction behavior resistance.

Search Result 318, Processing Time 0.024 seconds

Strength and Resistance to Chloride Penetration in Concrete Containing GGBFS with Ages (GGBFS를 혼입한 콘크리트의 재령에 따른 강도 및 염소이온 침투 저항성)

  • Park, Jae-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.307-314
    • /
    • 2017
  • Concrete is a durable and cost-benefit construction material, however performance degradation occurs due to steel corrosion exposed to chloride attack. Penetration of chloride ion usually decreases due to hydrates formation and reduction of pores, and the reduced chloride behavior is considered through decreasing diffusion coefficient with time. In the work, HPC (High Performance Concrete) samples are prepared with 3 levels of W/B (water to binder) ratios of 0.37, 0.42, and 0.27 and 3 levels of replacement ratios of 0%, 30% and 50%. Several tests containing chloride diffusion coefficient, passed charge, and compressive strength are performed considering age effect of 28 days and 180 days. Chloride diffusion is more reduced in OPC concrete with lower W/B ratio and GGBFS concrete with 50% replacement ratio shows significant reduction of chloride diffusion in higher W/B ratio. At the age of 28 days, GGBFS concrete with 50% replacement ratio shows more rapid reduction of chloride diffusion than strength development, which reveals that abundant GGBFS replacement has effective resistance to chloride penetration even in the early-aged condition.

Surface characteristics for thermal diffusion of FA-BFS-based geopolymer ceramics added alumina aggregate (알루미나 골재를 첨가한 FA-BFS계 지오폴리머 세라믹스의 열확산에 대한 표면 특성)

  • Kim, Jin-Ho;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • Geopolymer is an eco-friendly construction material that has various advantages such as reduced $CO_2$ emission, fire resistance and low thermal conductivity compared to cement. However, it has not been many studies on the thermal behavior of the surface of the geopolymer panel when flame is applied to the surface. In this study, surface characteristics of hardened geopolymer on flame exposure was investigated to observe its characteristics as heat-resistant architectural materials. External structure changes and crack due to the heat shock were not observed during the exposure on flame. According to the residue of calcite and halo pattern of aluminosilicate gel, decarboxylation and dehydration were extremely limited to the surface and, therefore, it is thought that durability of hardened geopolymer was sustained. Gehlenite and calcium silicate portion was inversely proportional to quartz and calcite and significantly directly proportional to BFS replacement ratio. Microstructure changes due to the thermal shock caused decarboxylation and dehydration of crystallization and it was developed the pore and new crystalline phase like calcium silicate and gehlenite. It is thought that those crystalline phase worked as a densification and strengthening mechanism on geopolymer panel surface.

A Study on the Policy Direction for the Introduction and Activation of Smart Factories by Korean SMEs (우리나라 중소기업의 스마트 팩토리 수용 및 활성화 제고를 위한 정책 방향에 대한 연구)

  • Lee, Yong-Gyu;Park, Chan-Kwon
    • Korean small business review
    • /
    • v.42 no.4
    • /
    • pp.251-283
    • /
    • 2020
  • The purpose of this study is to provide assistance to the establishment of related policies to improve the level of acceptance and use of smart factories for SMEs in Korea. To this end, the Unified Technology Acceptance Model (UTAUT) was extended to select additional factors that could affect the intention to accept technology, and to demonstrate this. To achieve the research objective, a questionnaire composed of 7-point Likert scales was prepared, and a survey was conducted for manufacturing-related companies. A total of 136 questionnaires were used for statistical processing. As a result of the hypothesis test, performance expectation and social influence had a positive (+) positive effect on voluntary use, but effort expectation and promotion conditions did not have a significant effect. As an extension factor, the network effect and organizational characteristics had a positive (+) effect, and the innovation resistance had a negative effect (-), but the perceived risk had no significant effect. When the size of the company is large, the perceived risk and innovation resistance are low, and the level of influencing factors for veterinary intentions, veterinary intentions, and veterinary behaviors are excluded. Through this study, factors that could have a positive and negative effect on the adoption (reduction) of smart factory-related technologies were identified and factors to be improved and factors to be reduced were suggested. As a result, this study suggests that smart factory-related technologies should be accepted.

Cone Resistivity Penetrometer for Detecting Thin-Layered Soils (협재층 탐지를 위한 선단비저항 콘)

  • Yoon, Hyung-Koo;Jung, Soon-Hyuck;Kim, Rae-Hyun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.15-25
    • /
    • 2010
  • The thin-layered sand seam in clay affects the soil behavior. Although the standard cone penetrometer (A: $10cm^2$) have been used to evaluate the thin-layered soil, the smaller diameter cone penetrometer have been commonly recommended because of the high resolution. The purpose of this study is the development and application of the Cone Resistivity Penetrometer (CRP), which detects qc, fs, and electrical resistivity at cone tip for the evaluation of thin layered soils. Two sizes of the CRP are developed for the laboratory and field test. The projected areas of CRP for the laboratory and field tests are $0.78cm^2$ (d: 1.0 cm) and $1.76cm^2$ (d: 1.5 cm), repectively. The length of friction sleeve is designed in consideration of ratio of the projected area to the friction sleeve area. The application tests are carried out by using the artificially prepared thin-layered soils in the laboratory. In addition, the field tests are conducted at the depth of 6 to 15 m in Kwangyang. In the laboratory test, the measured electrical resistivity and cone tip resistance detect the soil layers. Moreover, in the field test the CRP investigates the three thin-layered soils. This study suggests that the CRP may be a useful tool for detecting thin-layered in soft soils.

Analysis of Applicability of Rapid Hardening Composite Mat to Railway Sites (초속경 복합매트의 철도현장 적용성 분석)

  • Jang, Seong Min;Yoo, Hyun Sang;Oh, Dong Wook;Batchimeg, Banzragchgarav;Jung, Hyuk Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.109-116
    • /
    • 2024
  • The Rapid Hardening Composite Mat (RHCM) is a product that improves the initial strength development speed of conventional Geosynthetic Cementitious Composite Mats (GCCM). It offers the advantage of quickly securing sufficient strength in railway slopes with insufficient formation level, and provides benefits such as preventing slope erosion and inhibiting vegetation growth. In this study, an analysis of the practical applicability of RHCM in railway settings was conducted through experimentation. The on-site applicability was assessed by categorizing it into fire resistance, durability, and stability, and conducting combustibility test, ground contact pressure test, and daily displacement analyses. In the case of South Korea, where a significant portion of the territory is composed of forested areas, the prevention of slope fires is imperative. To analyze the fire resistance of RHCM, combustibility tests were conducted as an essential measure. Durability was assessed through ground contact pressure tests to analyze the deformation and potential damage of RHCM caused by the inevitable use of small to medium-sized equipment on the construction surface. Furthermore, daily displacement analysis was conducted to evaluate the structural stability by comparing and analyzing the displacement and behavior occurring during the application of RHCM with railway slope maintenance criteria. As a result of the experiments, the RHCM was analyzed to meet the criteria for heat release rate and gas toxicity. Furthermore, the ground contact pressure was observed to be consistently above 50 kPa during the curing period of 4 to 24 hours under all conditions. Additionally, the daily displacement analyzed through field site experiments ranged from -1.7 mm to 1.01 mm, confirming compliance with the criteria.

Seismic response characteristics of the hypothetical subsea tunnel in the fault zone with various material properties (다양한 물성의 단층대를 통과하는 가상해저터널의 지진 시 응답 특성)

  • Jang, Dong In;Kwak, Chang-Won;Park, Inn-Joon;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1061-1071
    • /
    • 2018
  • A subsea tunnel, being a super-sized underground structure must ensure safety at the time of earthquake, as well as at ordinary times. At the time of earthquake, in particular, of a subsea tunnel, a variety of response behaviors are induced owing to relative rigidity to the surrounding ground, or difference of displacement, so that the behavior characteristics can be hardly anticipated. The investigation aims to understand the behavior characteristics switched by earthquake of an imaginary subsea tunnel which passes through a fault zone having different physical properties from those of the surrounding ground. In order to achieve the aim, dynamic response behaviors of a subsea tunnel which passes through a fault zone were observed by means of indoor experiments. For the sake of improved earthquake resistance, a shape of subsea tunnel to which flexible segments have been applied was considered. Afterward, it is believed that a D/B can be established through 3-dimensional earthquake resistance interpretation of various grounds, on the basis of verified results from the experiments and interpretations under various conditions. The present investigation performed 1 g shaking table test in order to verify the result of 3-dimensional earthquake resistance interpretation. A model considering the similitude (1:100) of a scale-down model test was manufactured, and tests for three (3) Cases were carried out. Incident seismic wave was introduced by artificial seismic wave having both long-period and short-period earthquake properties in the horizontal direction which is rectangular to the processing direction of the tunnel, so that a fault zone was modeled. For numerical analysis, elastic modulus of the fault zone was assumed 1/5 value of the modulus of individual grounds surround the tunnel, in order to simulate a fault zone. Resultantly, reduced acceleration was confirmed with increase of physical properties of the fault zone, and the result from the shaking table test showed the same tendency as the result from 3-dimensional interpretation.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Flexural Design of Double Composite Box Girder over Interior Pier by LRFD Method (LRFD법에 의한 이중합성 박스거더 최대부모멘트 단면 휨 설계)

  • Cho, Eun Young;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.737-749
    • /
    • 2007
  • Flexural design of double composite box girder over the interior pier for three-span continuous bridge was performed by the LRFD method. The maximum span length of the continuous bridge ranged from 80m to 120m and the relative ratio of the span length was assumed to be 1:1.25:1. The girder section was designed for the strength limit state and service limit state with additional design check for constructibility. Before the bottom concrete and compression flange showed a complete composite action, the buckling of lower compression flange was checked. The flexural stiffness and flexural resistance characteristics for the section and for the constituent members such as tension flange, compression flange, and web were analyzed for different thicknesses of the bottom concrete on top of the compression flange. The effect of the distribution ratio of steel between the top and bottom flanges was investigated by analyzing ductility behavior and stress distribution through the girder's depth for several different relative area ratios of steel between the top and bottom flanges. It was found that a total amount of 15% of steel can be saved by applying the double composite system compared with that of the conventional composite system.

A Study on Inelastic Lateral-Torsional Buckling of Stepped I-Beams Subjected to Pure Bending (균일모멘트를 받는 계단식 I형보의 비탄성 횡-비틀림 좌굴에 관한 연구)

  • Kim, Jong Min;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2006) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to pure bending moment and resulted in the development of design equations. The flanges of the smaller cross-section were fixed at 30.48 by 2.54 cm, whereas the width and/or thickness of the flanges of the larger cross-section varied. The web thickness and height of beam was kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beams are considered analytical parameters. Two groups of 27 cases and 35 cases, respectively, were analyzed for double and single stepped beams. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi, etc (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic LTB problem and increase efficiency in building and bridge design. The proposed solutions can be easily used to develop new design equation for inelastic LTB resistance of stepped beams subjected to general loading condition such as a concentrated load, a series of concentrated loads or uniformly distributed load.

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF