• 제목/요약/키워드: Construction behavior resistance.

검색결과 318건 처리시간 0.031초

FE validation of the equivalent diameter calculation model for grouped headed studs

  • Spremic, Milan;Pavlovic, Marko;Markovic, Zlatko;Veljkovic, Milan;Budjevac, Dragan
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.375-386
    • /
    • 2018
  • Existing design codes for steel-concrete composite structures give only general information about the shear connection provided by headed studs in group arrangement. Grouting of the openings in prefabricated concrete slabs, where the grouped headed studs are placed in the deck pockets is alternative to cast-in-place decks to accomplish fast execution of composite structures. This paper considers the possibility to reduce the distance between the studs within the group, bellow the Eurocode limitations. This may lead to increased competitiveness of the prefabricated construction because more studs are placed in the group if negative effectives of smaller distances between studs are limited. The main purpose of this work is to investigate these limits and propose an analytical calculation model for prediction of the shear resistance of grouped stud arrangements in the deck pockets. An advanced FEA model, validated by results of push-out experiments, is used to analyze the shear behavior of the grouped stud with smaller distance between them than recommended by EN 1994-1. Calculation model for shear resistance, which is consistent with the existing Eurocode rules, is proposed based on a newly introduced equivalent diameter of the stud group, $d_G$. The new calculation model is validated by comparison to the results of FE parametric study. The distance between the studs in the longitudinal direction and the number of stud rows and columns in the group are considered as the main variables.

C12A7계 알루미나시멘트 및 아질산염을 사용한 저온환경 보수시공용 시멘트 모르타르의 특성 (Properties of Repair Cement Mortar with C12A7-based Alumina Cement and Nitrite for Low Temperature Curing)

  • 박정훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권4호
    • /
    • pp.124-131
    • /
    • 2017
  • 본 연구는 저온환경에서 경화가 가능한 알루미나시멘트 및 아질산염을 사용한 보수용 시멘트 모르타르의 기초성능을 평가하고자 하였다. 이를 위해 국내 건설현장에서 사용되고 있는 보수용 모르타르를 조사 및 선정하였으며, 이를 대상으로 알루미나시멘트, 아질산염을 치환하여 혼입량 조절에 따른 실험평가를 실시하였다. 그 결과, 알루미나시멘트, 아질산염을 보수용 모르타르에 치환하여 사용할 경우 초기 강도발현이 증진되었다. 또한 내화학성이 개선되었고 수축거동이 감소하였으며 동결융해에 대한 저항성이 증대되었다. 알루미나시멘트와 아질산염을 2:1의 비율로 7.5% 치환하여 외부구조물에 시공한 결과 표면상태가 5개월 이상 양호하게 유지되었으며, 실제 외부구조물에 사용성이 우수한 것으로 판단된다.

Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete

  • Lai, Binglin;Liew, J.Y. Richard;Xiong, Mingxiang
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.67-79
    • /
    • 2019
  • Composite columns made of high strength materials have been used in high-rise construction owing to its excellent structural performance resulting in smaller cross-sectional sizes. However, due to the limited understanding of its structural response, current design codes do not allow the use of high strength materials beyond a certain strength limit. This paper reports additional test data, analytical and numerical studies leading to a new design method to predict the ultimate resistance of composite columns made of high strength steel and high strength concrete. Based on previous study on high strength concrete filled steel tubular members and ongoing work on high strength concrete encased steel columns, this paper provides new findings and presents the feasibility of using high strength steel and high strength concrete for general double symmetric composite columns. A nonlinear finite element model has been developed to capture the composite beam-column behavior. The Eurocode 4 approach of designing composite columns is examined by comparing the test data with results obtained from code's predictions and finite element analysis, from which the validities of the concrete confinement effect and plastic design method are discussed. Eurocode 4 method is found to overestimate the resistance of concrete encased composite columns when ultra-high strength steel is used. Finally, a strain compatibility method is proposed as a modification of existing Eurocode 4 method to give reasonable prediction of the ultimate strength of concrete encased beam-columns with steel strength up to 900 MPa and concrete strength up to 100 MPa.

철골 모듈러 구조물의 포스트텐션 기둥-바닥 접합부 거동에 대한 해석적 연구 (Analytical Study on Structural Behaviors of Post-Tensioned Column-Base Connections for Steel Modular Structures)

  • 최경석;신동현;김형준
    • 한국전산구조공학회논문집
    • /
    • 제33권6호
    • /
    • pp.427-435
    • /
    • 2020
  • 모듈러 건축물은 철근콘크리트 및 철골 구조물에 비하여 상대적으로 경량이고, 단위 모듈간 기둥의 일체성을 기대하기 어려운 구조적 특성을 가진다. 이와 같은 구조적 특성은 모듈러 건축물의 높이가 높아짐에 따라 바람 및 지진과 같은 횡력저항성능에 직접적인 영향을 미친다. 본 연구에서는 횡력저항성능을 향상시키기 위해 긴장재를 활용한 모듈러 구조시스템을 제안하였다. 모듈러 구조시스템을 구성하는 주요 요소인 포스트텐션 기둥-바닥 접합부는 셀프 센터링 거동을 유도하기 위한 형상 및 상세를 가진다. 포스트텐션 기둥-바닥 접합부의 이력 거동을 상세히 파악하기 위해 유한요소해석을 수행하였으며, 그 결과 초기 긴장력 및 보-기둥 접합부의 접합 조건에 따라 이력 거동은 확연한 차이를 보이는 것으로 나타났다.

Shear performance and design recommendations of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite beams

  • Zhuangcheng Fang;Jinpeng Wu;Bingxiong Xian;Guifeng Zhao;Shu Fang;Yuhong Ma;Haibo Jiang
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.319-336
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has attracted increasing attention in prefabricated steel-concrete composite beams as achieving the onsite construction time savings and structural performance improvement. The inferior replacement and removal efficiency of conventional prefabricated steel-UHPC composite beams (PSUCBs) has thwarted its sustainable applications because of the widely used welded-connectors. Single embedded nut bolted shear connectors (SENBs) have recently introduced as an attempt to enhance demountability of PSUCBs. An in-depth exploration of the mechanical behavior of SENBs in UHPC is necessary to evidence feasibilities of corresponding PSUCBs. However, existing research has been limited to SENB arrangement impacts and lacked considerations on SENB geometric configuration counterparts. To this end, this paper performed twenty push-out tests and theoretical analyses on the shear performance and design recommendation of SENBs. Key test parameters comprised the diameter and grade of SENBs, degree and sequence of pretension, concrete casting method and connector type. Test results indicated that both diameters and grades of bolts exerted remarkable impacts on the SENB shear performance with respect to the shear and frictional responses. Also, there was limited influence of the bolt preload degrees on the shear capacity and ductility of SENBs, but non-negligible contributions to their corresponding frictional resistance and initial shear stiffness. Moreover, inverse pretension sequences or monolithic cast slabs presented slight improvements in the ultimate shear and slip capacity. Finally, design-oriented models with higher accuracy were introduced for predictions of the ultimate shear resistance and load-slip relationship of SENBs in PSUCBs.

복합긴장방식이 적용된 세그멘탈 U형 거더 정적 거동 연구 (A Study of Statistic Behavior of Segmental U-shaped Prestressed Concrete Girder Applied with Integrated Tensioning Systems)

  • 장현옥;장일영
    • 한국재난정보학회 논문집
    • /
    • 제20권2호
    • /
    • pp.329-338
    • /
    • 2024
  • 연구목적: 본 연구는 긴장방식을 복합적으로 적용한 세그멘탈 PSC U형 거더에 대한 해석적 거동을 기반으로 실대형 실험체의 휨 거동 결과를 평가하여 거동의 안전성을 검증하고자 한다. 연구방법: 도로교설계기준 한계상태설계법의 사용한계 및 극한한계상태 설계 결과를 바탕으로 40m 실대형 실험체의 가력하중을 산정하고 이에 대한 4점재하방식 정적 하중재하 실험을 수행하였다. 연구결과: 설계하중, 균열하중 및 극한하중이 작용할 때 해석적 처짐값 대비 97.1%, 98.5% 그리고 79.0%에 해당하는 실험체 처짐이 발생하였다. 설계하중, 균열하중 및 극한하중이 작용할 때 균열계는 각 연결부에서 0.009~0.035mm, 0.014~0.050mm, 6.383~5.522mm로 계측되었다. 결론: 균열하중 재하시까지 실험체는 탄성적으로 거동하였고 균열발생 후 극한하중까지 변형율-경화현상을 보이며 작용하중에 대하여 휨 저항 거동이 뚜렷이 나타났음을 확인하였다. 실대형 실험체 연결부(Dry Joint) 균열은 시설물 상태평가 B등급 기준 25% 미만의 결과로써 연결부의 탄성적 거동을 확인하였고 극한하중 제거 후 최종적 잔류 변형은 0.114mm로써 세그먼트 연결부의 안정적 거동을 확인하였다.

Strain Monitoring of Strengthened RC Beams with Hybrid Fiber Reinforced Polymer(FRP) Laminates by FBG Sensor

  • 홍건호;신영수;최은규
    • 콘크리트학회논문집
    • /
    • 제18권2호
    • /
    • pp.293-298
    • /
    • 2006
  • The reinforced concrete(RC) structures strengthened with fiber reinforced plastic(FRP) has been accepted by the construction engineering community for rehabilitation. FRP composites can present many advantages like a corrosion resistance, strength-weight ratio, relatively short application time, and cost effectiveness. The beams under design load, however, are cracked and result in degrading the strength. It is difficult to recognize cracks and deflections on the surface of the concrete members retrofitted with FRP through the life cycle. For these reasons, if they result in the effects, which were below the expected strength, we must monitor the state of concrete structures all the time in order to take an appropriate measure. Fiber Bragg Grating(FBG) sensor excel as monitoring of investigating the stress state of the retrofitted beams with FRP. The main objective of this study is to measure strain by experiment and analyze the behavior of RC beams retrofitted with FRP using FBG sensor. The kinds of FRP which were used in research are carbon, glass and improved hybrid FRP(IFRP) that has capacity than any other FRP. Other variables are the length of FRP, the number of sheet.

Strength and Durability of Mortar Made with Plastics Bag Waste (MPBW)

  • Ghernouti, Youcef;Rabehi, Bahia
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권3호
    • /
    • pp.145-153
    • /
    • 2012
  • The aim of this study is to explore the possibility of re-cycling a waste material that is now produced in large quantities, while achieving an improvement of the mechanical properties and durability of the mortar. This study examines the mechanical properties and the durability parameters of mortars incorporating plastics bag wastes (PBW) as fine aggregate by substitution of a variable percentage of sand (10, 20, 30 and 40 %). The influence of the PBW on the, compressive and flexural strength, drying shrinkage, fire resistance, sulfuric acid attack and chloride diffusion coefficient of the different mortars, has been investigated and analyzed in comparison to the control mortar. The results showed that the use of PBW enabled to reduce by 18-23 % the compressive strength of mortars containing 10 and 20 % of waste respectively, which remains always close to the reference mortar (made without waste). The replacement of sand by PBW in mortar slows down the penetration of chloride ions, improves the behavior of mortars in acidic medium and improves the sensitivity to cracking. The results of this investigation consolidate the idea of the use of PBW in the field of construction.

부식촉진에 의한 해양.항만 철근 콘크리트 구조물의 철근 방식에 관한 실험적 연구 (Rapid Corrosion Test on Marine Reinforcing Steel)

  • 정근성;문홍식;송호진;이상국;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.537-542
    • /
    • 2001
  • Recently long-span bridges, such as Kwang-Ahn Grand bridge, Seo-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the shore. It needs to maintain the durability of marine concrete structures which are exposed to severe chloride environments. It is well known that corrosion of reinforcement steels in concrete structure is the most important cause for the durability of concrete structure which can be controlled by systematic preparatory corrosion protection works for economic and safe infrastructures. Various corrosion protection systems have been used for the corrosion protection of reinforcement steels from detrimental chemical components such as chloride, sulphate and etc. Since chloride can be penetrated into concrete in a variety way, an effective method has to be adopted by taking into full economical aspects and technical data of each protection system. The objective of this experimental study is to investigate the corrosion behavior of reinforcing steel in laboratory concrete specimens which are exposed to cyclic wet and dry saltwater, and then to develop pertinent corrosion protection system, such as corrosion inhibitors and cathodic protection for reinforced concrete bridges exposed to chloride environment. Resistance of various corrosion inhibitors and impressed current system have been experimentally evaluated under severe environmental conditions, and thus effective corrosion protection systems could have been Practically developed for future concrete construction.

  • PDF

탄소섬유시트를 이용한 I형 PFRP 부재의 휨보강 효과 (The Flexural Strengthening Effect of I-Shape PFRP Member Using Carbon Fiber Sheet)

  • 이영근;김선희;이강연;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제4권2호
    • /
    • pp.1-7
    • /
    • 2013
  • In recent years, fiber reinforced polymer plastic composites are readily available in the construction industry. Fiber reinforced polymer composite has many advantages such as high specific strength and high specific stiffness, high corrosion resistance, light-weight, magnetic transparency, etc. In this paper, we present the result of investigation pertaining to the flexural behavior of flange strengthened I-shape pultruded fiber reinforced polymer plastic (PFRP) member using carbon fiber sheet (CFRP sheet). Test variable is consisted of the number of layers of strengthening CFRP sheet from 0 to 3. From the experimental results, flexural strengthening effect of flange strengthened I-shape PFRP member using CFRP sheet is evaluated and it was found that 2 layers of strengthening CFRP sheet are appropriate considering efficiency and workability.