• Title/Summary/Keyword: Construction Period Reduction

Search Result 227, Processing Time 0.027 seconds

Quantification of the CO2 Footprint in Residential Construction

  • Don Mah;Juan D. Manrique;Haitao Yu;Mohamed Al-Hussein;Reza Nasseri
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.525-536
    • /
    • 2009
  • The current residential process adheres to a traditional method of construction involving wood framing on-site on poured concrete foundations which has been widely applied in North America. A conventional residential construction process can include seventeen distinct stages ranging from stake-out to pre-occupancy inspection. The current practice possesses short comings including high construction material wastes, long scheduling timelines, adverse weather conditions, poor quality, low efficiencies and negative environmental impacts from transportation and equipment use. Over CAN $5 billion dollars was spent in the construction sector during 2007 in Canada. Previous findings in CO2 emissions during the construction process of a conventional dwelling emphasize more than 45 tonnes of CO2 emissions. Hence, in Alberta alone during 2007, almost 50,000 residential units would release more than two million tonnes of CO2. These numbers demonstrate the economical and environmental impact in building construction and its relationship with CO2 emissions. The aim of this paper is to quantify the CO2 emissions from the current residential construction process in order to establish the baseline for CO2 emission reduction opportunities. The quantification collection methodology will be approached by identifying the seventeen various stages of construction and quantifying the contributions of CO2 from specific activities and their impacts of work for each stage. The approach of separating these into separate stages for collection will allow for independent opportunities for analysis from various independent contractors from the entire scope of work. The use of BIM will be implemented to efficiently quantify CO2 emissions. Based on the CO2 quantification baseline, emission reduction opportunities such as an industrialized construction process will be introduced that allows homebuilders to reduce the environmental and economical impact of home construction while enabling them to produce higher quality, more energy efficient homes in a safer and shorter period of time.

  • PDF

Application Effect Analysis of The Modular Construction Method in The Extension Works (저층 교육시설 증축공사에서 모듈러 공법의 적용효과 분석)

  • Kim, Hakcheol;Shin, Dongwoo;Cha, Heesung;Kim, Kyungrai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.101-111
    • /
    • 2015
  • The modular construction method has been getting more attention followed by global eco-friendly trend as the domestic construction industry has focused more on remodeling and extension work. The modular construction method is an industrialized construction system which is not likely as the existing construction method it manufactures more than 70% modules at the factory then assembling can be completed in a short amount of time on site. The modular construction method has various strengths; shortening of construction period by on-site work decrease, weight pressure reduction by usage of light steel frames and cost saving by repetitive manufacturing. However, it is currently not expanded due to the existing commercialized construction method. Therefore, this research is in order to help the related authorities make decisions to select the construction method and motivate expansion of modular construction method which can be utilized effectively in the extension works. The intention of this research is to stress differentiation from other construction methods in construction period, construction expenses, labor and forces by comparing and analyzing actual cases, to inform competitiveness of modular construction method by concrete effect analysis and to support adoption of the modular construction method into the domestic industry.

A Study on Heating Energy Monitoring of a Rural Detached House Applying Passive House Design Components (패시브 하우스 디자인 요소를 적용한 농촌지역 단독주거건물의 난방에너지 모니터링 연구)

  • Cho, Kyung-Min;Lee, Tae-Goo;Han, Young-Hae
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.39-46
    • /
    • 2013
  • Recently, the field of construction is putting a variety of effort into reducing CO2, since global warming is being accelerated due to climate changes and the increase of greenhouse gas. For reduction of CO2 in the field of construction, it is required to make plans to cut down heating energy of buildings and especially, it is urgently needed to cut down energy of residential buildings in rural area where occupies the majority of consumption of petroleum-based energy sources. Therefore, this research compared and analyzed the actual energy consumption, by evaluating energy performance of a detached house applying passive house design components for reduction of energy. As the result, energy consumption showed remarkable differences, according to the operation of a heat recovery ventilation unit which is one of passive house design components, and building energy consumption displayed remarkable differences, too, depending on the difference of airtightness performance during building energy simulation conducted in process of design. Based on these results, the importance of airtightness performance of passive house was verified. The result of the actual measurement of energy consumption demonstrated that LNG was most economical amongst several heat resources yielded, on the basis of LPG source energy consumption measured within a certain period of time, and it was followed by kerosene. LPG was analyzed to have a low economic efficiency, when used for heating.

Establishment of WBS·CBS-based Construction Information Classification System for Efficient Construction Cost Analysis and Prediction of High-tech Facilities (하이테크 공장의 효율적 건설 사업비 분석 및 예측을 위한 WBS·CBS 기반 건설정보 분류체계 구축)

  • Choi, Seong Hoon;Kim, Jinchul;Kwon, Soonwook
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.356-366
    • /
    • 2021
  • The high-tech industry, a leader in the national economy, has a larger investment cost compared to general buildings, a shorter construction period, and requires continuous investment. Therefore, accurate construction cost prediction and quick decision-making are important factors for efficient cost and process management. Overseas, the construction information classification system has been standardized since 1980 and has been continuously developed, improving construction productivity by systematically collecting and utilizing project life cycle information. At domestic construction sites, attempts have been made to standardize the classification system of construction information, but it is difficult to achieve continuous standardization and systematization due to the absence of a standardization body and differences in cost and process management methods for each construction company. Particular, in the case of the high-tech industry, the standardization and systematization level of the construction information classification system for high-tech facility construction is very low due to problems such as large scale, numerous types of work, complex construction and security. Therefore, the purpose of this study is to construct a construction information classification system suitable for high-tech facility construction through collection, classification, and analysis of related project data constructed in Korea. Based on the WBS (Work Breakdown Structure) and CBS (Cost Breakdown Structure) classified and analyzed through this study, a code system through hierarchical classification was proposed, and the cost model of buildings by linking WBS and CBS was three-dimensionalized and the utilized method was presented. Through this, an information classification system based on inter-relationships can be developed beyond the one-way tree structure, which is a general construction information classification system, and effects such as shortening of construction period and cost reduction will be maximized.

A Planting Study on the Development of Eco-friendly Reinforced Earth-Retaining Wall Using Planting Green Net (환경친화형 그린넷 보강토 옹벽 개발을 위한 식생시험 연구)

  • Chung, Dae-Seouk
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1099-1102
    • /
    • 2007
  • This paper presents eco-friendly planting method to overcome the problems of existing concrete retaining wall and gabion retaining wall, respectively, based on the examination on existing concrete and gabion retaining wall. Prior to doing this, proper design method was provided through pull out test. Planting method using gabion metal net and L shape green net retaining wall were compared and analyzed. According to this study, it is confirmed that reduction of construction period and economical profit in construction can be achieved by both manufacturing at the factory and self procurement at the job site as well as the use of metal net, which is applied as a substitution of existing strengthening material. For the effect of planting method, the use of L shape green net retaining wall shows superiority to environment-friendly gabion retaining wall in its ability to rootage and germination of the grass. The L shape green net retaining wall had excellent performance in helping rootage of grass and prevention of soil leakage, and even if raining period, remarkable damage of planting mat does not occur when planting mat is applied.

Vibration Control of Offshore Platform using Tuned Mass Damper (동조질량감쇠기를 이용한 해양구조물의 진동제어)

  • Kim, Ju Myung;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.73-79
    • /
    • 2004
  • Tuned Mass Damper (TMD) was applied to control the vibration of an offshore structure due to ocean waves. The errors caused by the linearization of the fluid-structure interaction effect and the phenomena when using the linearized equation of motion in TMD design were analyzed. To determine the performance of TMD in controlling vibration, both regular waves with varying periods and irregular waves with different significant wave heights were used. When the offshore structure received regular waves with a period similar to the first natural period of structure. TMD performed well in terms of response reduction. Such was not the case for the other periods. however, In the case of irregular waves, TMD triggered the reduction of structural response for waves with relatively small significant wave height. For irregular waves with relatively big significant wave height, however, TMD did not show any control effect. Therefore, TMD is useful in reducing offshore structural vibration due to ambient waves, thereby helping secure fatigue life.

A Case Study on Blasting Demolition Method of Structure (구조물 발파해체 공법 시공사례 연구)

  • 한동훈;안명석;공병승;이윤재;류창하
    • Explosives and Blasting
    • /
    • v.21 no.3
    • /
    • pp.49-60
    • /
    • 2003
  • Nowadays it is tendency to make a remodelling or demolition of old structures with the rapid development of blasting technique. In this treatise it is arranged of improvement procedure of blasting demolition method in korea which was begun since August 1991. Recently, the blasting demolition method has much merits with 60-70% reduction effect of construction period than mechanical demolition method. and so that it has much economical points specially over than 5 storied high buildings. In order to maximalize economical effects of the blasting demolition method, environment safety and recycling, it must be needed. at first to develop the estimating programs against vibration, noise, flying stones, and dust. Also it is required to take a responsibility for using recycling materials after blasting demolition of old structures, and to be invested to advance the blasting demolition techniques.

A study on the Construction Materials Management using RFID (RFID를 활용한 건설공사 자재관리 방안 연구)

  • Oh, Kun-Soo;Song, Jeong-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.242-249
    • /
    • 2010
  • As the scale of domestic building construction becomes larger, more complicated and more specialized, demands for quality improvement, cost reduction and construction period shortening increase. Construction materials management becomes a main factor to perform the project successfully. Therefore, various researches using RFID(Radio Frequency Identification) are being studied to manage the construction materials efficiently. This research aims to suggest the method of construction materials management using RFID in apartment housing. First, the technical properties of RFID are grasped. Second, problems are extracted by analyzing the case studies and related research using RFID in construction field. Third, construction materials are classified according to the construction process and process of materials management is analyzed. Lastly, method of construction materials management using RFID is suggested. The results of this research are expected to contribute the improvement of construction productivity through effective material management.

A Study on Improvement of fatigue Details in Orthotropic Steel Deck Bridge with Bulkhead Plate (벌크헤드 플레이트가 부착된 강바닥판교의 피로상세 개선 연구)

  • 공병승
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • An orthotropic steel deck system is widely adapted form for a long-span bridge. It has many advantages, such as the big reduction of dead weight, the simplicity for erection, and the reduction of the construction period. However, an orthotropic steel deck system requires a lot of welding work, which may result in defects and deformation of connection. Therefore, the research for the general behavior and fatigue strength of the several details in orthotropic steel deck bridge is necessary. The fatigue failure with distortion results from secondary stress by out-of-plane deformation; these kinds of cracks are very difficult to measure, and can not be precisely calculated through finite element analysis. This stress concentration phenomenon generates the fatigue failure around the lower scallop of the transverse rib. This paper presents improved details of the intersection between the longitudinal rib and the transverse rib of an orthotropic steel deck bridge by the third dimensional hit size test, and the finite element method, which can minimize local stress through parametric study.

Precast Concrete Guideway of Automated Guideway Transit with Rubber Tire. (경량전철 고무차륜용 PC슬레브 궤도)

  • 조능호;정원기;이규정;윤태양;이안호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.295-302
    • /
    • 2000
  • Slab guideway, surface treatment, heat line installation, and joint connection for Automated Guideway Transit with rubber tire are researched. While the AGT with rubber tire is constructed in city, the precast slab guideway must be considered a reduction of the construction period and the noise under construction. which related with environment. To do that, a basic design and the structural analysis for the precast slab guideway with rubber tire are studied. The surface treatment and the heat line installation of that are also compared with currently used methods. Tining method is applied to the surface treatment adopted from the concrete pavement application currently in use. The connection method between the slab of bridge and precast guideway are suggested with a bolt type and a bond type. To minimize noise and vibration of the connection while the AGT is in driving, the slop connection method can be enhanced the serviceability.

  • PDF