• Title/Summary/Keyword: Construction Noise and Vibration

Search Result 587, Processing Time 0.05 seconds

A Case Study on the Prediction of Underwater Sound by Measuring Ground Vibration (지반진동 측정을 통한 수중소음 예측 및 관리 적용사례)

  • Lim, Dae-Kyu;Cho, Kwang-Hyun;Jun, Yang-Bae
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.86-98
    • /
    • 2010
  • As the quality of life is being upgraded, the public complaints about noise and vibration from construction sites are growing. Despite the disputes over the blasting damage on aquatic lives in river, ocean, and aquarium near construction sites tend to increase, most of existing solutions or regulations on the damages caused by blasting are established for the damages on land. Although the estimated amount of damage is up to several millions of USD, there is no guideline for resolving the dispute related to the underwater vibration. This paper presents an example where the public grievance about the underwater noise was successfully resolved by elucidating the characteristics of underwater sound, deducing the correlations between ground vibration and underwater sound during blast, and predicting the underwater sound level during blasting from the ground vibration measured on the ground near an aquarium basin.

Improvement of Sound Quality of Voice Transmission by Finger

  • Park, Hyungwoo
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.218-226
    • /
    • 2019
  • In modern society, people live in an environment with artificial or natural noise. Especially, the sound that corresponds to the artificial noise makes the noise itself and affects each other because many people live and work in the city. Sounds are generated by the activities and causes of various people, such as construction sites, aircraft, production machinery, or road traffic. These sounds are essential elements in human life and are recognized and judged by human auditory organs. Noise is a sound that you do not want to hear by subjective evaluation, and it is a loud sound that gives hearing damage or a sound that causes physical and mental harm. In this study, we introduce the method of stimulating the human hearing by finger vibration and explain the advantages of the proposed method in various kinds of a noise environment. And how to improve the sound quality to improve efficiency. In this paper, we propose a method to prevent the loss of hearing loss and the transmission of sound information based on proper signal to noise ratio when using portable IT equipment in various noise environments.

Evaluation on Reduction Effect of Dam Hydraulic Turbine Dynamo Noise using Auralization (가청화를 이용한 댐 수차 발전기소음의 저감효과 평가)

  • Jung, Eun-Jung;Jung, Chul-Woon;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.253-257
    • /
    • 2007
  • In case of the hydraulic turbine dynamo room at Dam, due to its big volume and reflexible finishing material, since the noise of electricity-generation is amplifying, it influences the difficulty of mutual communication among the workers, also it is causing both mental and physical damages to those workers in the neighboring office. Accordingly, after presentation of the optimized renovation model of the hydraulic turbine dynamo room using the acoustic simulation, this Research has compared and evaluated them using the auralizational technique between the present condition of "before improvement" and the acoustic condition of "after improvement". As the result of psycho-acoustics experiment, as the acoustic conditions at both "before & after Improvement" were apparently compared, it appeared that there is a considerable amount of noise-reduction effect at psycho-acoustics. It is considered that such material could be utilized as the valuable data hereafter for the time when any construction and renovation of the hydraulic turbine dynamo room and other similar workshop.

  • PDF

Correspondence Research of Long-term Compressive Creep of Resilient Materials and ISO 20392 (완충재 장기처짐과 ISO 20392 대응 연구)

  • Kim, Kyoung-Woo;Yeon, Jun-Oh;Yang, Kwan-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1250-1256
    • /
    • 2012
  • Resilient materials are used to reduce the floor impact sound in apartment buildings. Since an on-dol layer is installed in the resilient materials' upper part, thickness deformation can be occur in the resilient material. It is necessary to check a thickness deformation grade for a long period of time. In this research, we measured thickness deformation over 400th day to the resilient materials(EPP, EPS, EVA) which is used in Korea. Although there was a difference according to the kind of measurement test specimens, it became clear that thickness was decreases as to time increased. The thickness deformation grade of ten years after was calculated based on the thickness measurement result. Compare with the calculated result and result of ISO 20392. Larger thickness deformation occurred in the measurement result of these research findings compare with the ISO standard.

A Study on the Floor Impact Sound Insulation Performance of Apartments depending on the Damping Materials (완충구조에 의한 공동주택 바닥충격음 차단성능 변화 연구)

  • Gi, No-Gab;Song, Min-Jeong;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.79-82
    • /
    • 2005
  • This study aims to propose fundamental data for development of noise reduction system that is applied to classification for light-weight impact sound. For this reason, eight types of damping materials were constructed in new construction field. Comparison and analysis among the reduction materials were carried out on the acoustical characteristics through test. In the end, the suitability as a damping material was evaluated by the analysis.

  • PDF

An Experimental Study on Structural Safety Assesment of Wet Type Floor Heating System with Insulation (완충재 적용에 따른 습식온돌의 구조안전성 평가를 위한 실험연구)

  • Ahn, Jae-Won;Jun, Myoung-Hoon;Lee, Bum-Sik;Lee, Do-Heun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.287-290
    • /
    • 2005
  • Housing is demanded to convert simple dwelling space into delightful one by improving of standard of living by economic development It is interested in the impact noise of the apartment housing that is revised to housing construction criteria at 29 March 2005 and then regulated the level of floor impact noise by the rule. The plan, which is actively investigated by counterplan for the reduction of impact noise, is application of sound insulation. In generally, first target by using insulation is the reduction of floor thermal transmittance in floor heating system of apartment housing. It is recently proposed soft materials that reduce the impact noise. However, it is a fact that the application of soft sound insulation includes some problem about structural performance. In this study, we made wet-heating specimen with various sound insulations, and carried out structralexperiment for evaluating the structural safety of it.

  • PDF

A Case Study on the Shaft Construction Using Electronic Detonators (전자뇌관(HiTRONIC II™)을 이용한 수직구 시공 사례)

  • Hwang, Nam-Sun;Jin, Geun-Woo;Yeo, Jin-Hyeok;Jeong, Dong-Ho;Kim, Yeon-Hong
    • Explosives and Blasting
    • /
    • v.38 no.2
    • /
    • pp.22-35
    • /
    • 2020
  • Recently, electronic detonators have been widely used in various sites. Electronic detonators are often used for the purpose of reducing the noise and vibration produced by blasting. In addition, electronic detonators are used for precision blasting at sites where mechanical excavation techniques are applied due to proximity of safety things or where blasting by conventional detonators are not possible. Various technologies are being attempted at the blasting site to increase constructivity and lower production costs by using electronic detonators. In this paper, we would like to introduce a construction case that use of electronic detonators in the situation of safety things being adjacent increases the efficiency of construction while meeting the ground vibration criteria of Ministry of Land, Infrastructure, and Transport. The blasting was carried out at domestic and overseas shaft using HiTRONIC II™, produced by Hanwha. Generally the shaft blasting is performed by dividing the blasting surface because of the noise and vibration caused by the blasting. but, in the case introduced in this paper, the blasting was carried out once without dividing the blasting surface, thus the construction period could be shortened.

Forced Vibration and Loads Analysis of Large-scale Wind Turbine Blades Considering Blade Bending and Torsion Coupling (굽힘 및 비틀림 연성 효과를 고려한 대형 풍력 터빈 블레이드의 강제 진동 및 하중 해석)

  • Kim, Kyung-Taek;Park, Jong-Po;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.256-263
    • /
    • 2008
  • The assumed modes method is developed to derive a set of linear differential equations describing the motion of a flexible wind turbine blade and to propose an approach to investigate the forced responses result from various wind excitations. In this work, we have adopted Euler beam theory and considered that the root of the blade is clamped at the rigid hub. And the aerodynamic parameters and forces are determined based on Blade Element Momentum (BEM) theory and quasi-steady airfoil aerodynamics. Numerical calculations show that this method gives good results and it can be used fur modeling and the forced vibration analysis including the coupling effect of wind-turbine blades, as well as turbo-machinery blades, aircraft propellers or helicopter rotor blades which may be considered as straight non-uniform beams with built-in pre-twist.

  • PDF

Application of Vibration Prediction Method Using Response Spectrum with Amplification Factor (증폭계수를 이용한 진동 예측기법의 적용)

  • 심재수;황의승;김덕중;윤종오
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.37-43
    • /
    • 1997
  • Damages and public complaints are increased due to construction noise and vibration from several sources. It is urgently needed to develop the easy and practical method to estimate the vibration effect. In this study, to predict the vibration effect, the method using the response spectrum with amplification factor concepts prroposed by Newmark and Hall is used. Also the applicability of the method is examined. Vibration measurement on subway structure, foundation and building structures are performed and the results show that the provided method is practical and can be used to predict the vibration effect.

  • PDF

Estimation of the Dynamic Load of the Utility in Building by TPA Method (건물 바닥 구조 해석 모드의 튜닝)

  • Jeong, Min-Ki;Kwon, Hyung-O;Kim, Hyo-Beom;Lee, Jeong-Ha;Lee, Sang-Yeop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.441-446
    • /
    • 2008
  • The source transfer receiver model ('Source $\times$ Transfer = Response' model) which is widely used by NVH development process of vehicle/transport/machinery to analyze effectively and manage efficiently the structural dynamic behavior is also applicable to construction structure. If the evaluation assessment of the vibration level does not meet the target level, there are two methods, one is source treatment or replacement and the other is the reduction treatment on the transfer structure. In case of source treatment, it is done by source supplier and so, the latter is more practical method to reduce the vibration level. In this study, in order to get the accurate Transfer FE model(floor structure FE model), Experimental modal analysis of part of floor structure and FEM modal analysis of full floor structure are performed, then updating of FE model is performed after correlation analysis between these two results and finally, the modal model and FRF are compared between FE and Experimental results.

  • PDF