• Title/Summary/Keyword: Construction Facilities

Search Result 2,713, Processing Time 0.03 seconds

The Numerical Analysis on the Behaviour of Combined Sheet Pile in the Reclaimed Ground Mixed by Sandy Soil and Clayey Soil (사질토와 점성토가 혼재하는 해안 매립지반에서 조합형 Sheet Pile의 거동에 관한 해석적 연구)

  • Kim, Byung-Il;Kim, Young-Sun;Han, Sang-Jae;Park, Eon-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.9-21
    • /
    • 2020
  • In this study, the design method of the combined sheet pile was considered in the coastal landfill where sandy and clayey soils are mixed, and the behavior in excavation was analyzed. It was confirmed from the elasto-plastic analysis that the predicted behavior of the temporary facilities of earth retaining differs according to the type of the combined sheet pile method (Built up, Interlocking, Welding) and the analysis method (soldier pile method, continuous wall method). In the case of sheet pile member force, the results of the continuous wall analysis method predicted the most conservative results. When the stress ratio (calculation/allowance) of each member was analyzed based on the maximum member force of the combined sheet pile method, the maximum value was obtained for bending moment in the side pile and combined stress in the case of the strut. As a result of finite element analysis, the member force of the side pile was the largest in the short-term effective stress analysis condition, while the compressive force of the strut was large in the consolidation analysis. When comparing the results of the elasto-plastic analysis and the finite element analysis, the shear force of the side pile and the axial force of the strut were greatly evaluated in the elasto-plastic analysis, and the bending moment of the side pile was the largest in the short-term effective stress condition of the finite element analysis. In addition, the displacement of the side pile was predicted to be greater in the finite element analysis than in the elasto-plastic analysis.

Case Study on Engineering Camp Program involving Engineering Design Activity and Intra-/Inter-Team Works for High School Students: Plant factory as main theme (공학설계활동과 팀 내, 팀 간 협력 기반 고등학생 공학 캠프 프로그램 운영 사례: 식물공장을 주제로)

  • Cho, Kyung-Suk
    • Journal of Engineering Education Research
    • /
    • v.18 no.3
    • /
    • pp.46-58
    • /
    • 2015
  • Informal engineering education program for high school students was developed to cultivate engineering literacy using the human resources and facilities of university. Plant factory, a smart farming technology, was selected as a main theme, and the novel engineering camp program involving engineering design activities and intra-linter-team works was planned. The camp program was applied to 38 high school students in an active learning classroom. Five teams were constructed according to elemental technologies such as biotechnology, information-communication technology, energy engineering, mechanical engineering and architectural engineering, and the students were participated in intra- and inter-team activities to achieve the final goal of 'the construction of a plant factory in school'. The team works were conducted according to the eight steps of engineering design process (identifying the problem and need, identifying criteria and constraints, brainstorming possible solutions, selecting the best possible solution, constructing a prototype, testing and evaluating the solution, communicating the solution, and refining design). Participants' satisfaction survey showed that the satisfaction on the contents of engineering design was 4.48 on 5-point Likert scale. The participants' satisfaction on creative activity and systematic methodology was 4.43 on 5-point Likert scale. 97% of participants responded positively to team works, and 92% of participants were satisfied with career mentoring activity supplied by undergraduate/graduate students. These results indicates that the engineering camp program involving engineering design activity and intra-/inter-team works can contribute to cultivate engineering literacy such as creativity, problem solving ability, collaboration, communication skills for high school students, and to increase their interests in engineering fields.

Estimation of Safety in Railway Tunnel by Using Quantitative Risk Assessment (QRA를 이용한 철도터널 방재 안전성 평가)

  • Kim, Do-Sik;Kim, Do-Hyung;Kim, Woo-Sung;Lee, Du-Hwa;Lee, Ho-Seok
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.357-367
    • /
    • 2006
  • Recently, as the construction of new railway and the relocation of existing line increase, tunnel structures grow longer. The railway fire accidents in long tunnel bring large damages of human life and disaster. The interest of safety in long tunnel have a growing and the safety standard of long tunnel is tightening. For that reason, at the planning of long tunnel, the optimum design of safety facility in long tunnel for minimizing the risks and satisfying the safety standard is needed. For the reasonable design of long railway tunnel considering high safety, qualitative estimation for tunnel safety is required. In this study, QRA (Quantitative Risk Assessment) technique is applied to design of long railway tunnel for assuring the safety function and estimating the risk of safety. The case study for safety design in long railway tunnel is tarried out to verifying the QRA technique for two railway tunnels. Thus, the inclined and vertical shaft for escape way and safety facilities in long tunnel are planned, and the risks of tunnel safety for each case are estimated quantitatively.

Combustion Characteristics of a Hot Water Boiler System Convertibly Fueled by Rice Husk and Heavy Oil - Heavy Oil Combustion Characteristics -

  • Kim, Myoung Ho;Kim, Dong Sun;Park, Seung Je
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.306-311
    • /
    • 2013
  • Purpose: With the ever-rising energy prices, thermal energy heavily consuming facilities of the agricultural sector such as commercialized greenhouses and large-scale Rice Processing Complexes (RPCs) need to cut down their energy cost if they must run profitable businesses continually. One possible way to reduce their energy cost is to utilize combustible agricultural by-products or low-price oil instead of light oil as the fuel for their boiler systems. This study aims to analyze the heavy oil combustion characteristics of a newly developed hot water boiler system that can use both rice husk and heavy oil as its fuel convertibly. Methods: Heavy oil combustion experiments were conducted in this study employing four fuel feed rates (7.6, 8.5, 9.5, 11.4 $l/h$) at a combustion furnace vacuum pressure of 500 Pa and with four combustion furnace vacuum pressures (375, 500, 625, 750 Pa) at fuel feed rates of 9.5 and 11.4 $l/h$. Temperatures at five locations inside the combustion furnace and 20 additional locations throughout the whole hot water boiler system were measured to ascertain the combustion characteristics of the heavy oil. From the temperature measurement data, the thermal efficiency of the system was calculated. Flue gas smoke density and concentrations of air-polluting components in the flue gas were also measured by a gas analyzer. Results: As the fuel feed rate or combustion furnace vacuum pressure increased, the average temperature in the combustion furnace decreased but the thermal efficiency of the system showed no distinctive change. On the other hand, the thermal efficiency of the system was inversely proportionally to the vacuum level in the furnace. For all experimental conditions, the thermal efficiency remained in the range of 80.1-89.6%. The CO concentration in the flue gas was negligibly low. The NO and $SO_2$ concentration as well as the smoke density met the legal requirements. Conclusions: Considering the combustion temperature characteristics, thermal efficiency, and flue gas composition, the optimal combustion condition of the system seemed to be either the fuel feed rate of 9.5 $l/h$ with a combustion furnace vacuum pressure of 375 Pa or a fuel feed rate of 11.4 $l/h$ with a furnace vacuum pressure between 500 Pa and 625 Pa.

Numerical simulation of groundwater flow in LILW Repository site:II. Input parameters for Safety Assessment (중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 2. 처분 안전성 평가 인자)

  • Park, Kyung-Woo;Ji, Sung-Hoon;Koh, Yong-Kwon;Kim, Geon-Young;Kim, Jin-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.283-296
    • /
    • 2008
  • The numerical simulations for groundwater flow were carried out to support the input parameters for safety assessment in LILW repository site. As the input parameters for safety assessment, the groundwater flux into the underground facilities during construction, flow rate through the disposal silo after closure of disposal silo and flow pathway from the disposal silo to discharge area were analyzed using the 10 cases groundwater flow simulations. From the total 10 numerical simulation results, the statistics of estimated output were similar to among 10 cases. In some cases, the analyzed input parameters were strongly governed by locally existed high permeable fracture zone at radioactive waste disposed depth. Indeed, numerical simulation for well scenario as a human intrusion scenario was carried out using the hydraulically severe case model. Using the results of well scenario, the input parameters for safety assessment were also obtained through the numerical simulation.

  • PDF

A development of integrated water-quality measurement system (통합 수질계측 시스템 개발)

  • Yang, Keun-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.211-216
    • /
    • 2007
  • The quality of tap water on the whole water-supply system, from a large filtration plant to a private faucet, has to be guaranteed the standards of drinking water. At this point in time, however, the supply process of the tap water has not been monitored and managed scientifically. The piped water, especially the most small-scale reservoirs(underground or overhead type) are always exposed to various contaminations and impurities. Recently monitoring systems of water-quality were spread on some large filtration plants or distributing reservoirs. In particular, the water quality monitoring method using the internet is adopted into some local government whose inhabitants can check up the water quality anytime and anywhere. The construction of this system that has to apply a large scale needs, and has a limitation on the small water-supply system, such as apartments, public facilities and small-scale underground or overhead reservoirs. In this work, we suggest the integration system of individual water-quality sensor modules that have a low price. By using the developed integration system and monitoring program operated on the internet, the system managers of reservoirs can monitor and manage water-quality characteristic values of drinking water in online. Since the proposed system was modularized, the system can be applied easily into various reservoirs with a low cost and regardless of its scale, small or large.

  • PDF

Environmental Improvement Effect and Social Benefit of Environmental Impact Assessment: Focusing on Thermal Power Plant (환경영향평가를 통한 화력발전소의 환경개선 효과와 사회적 편익)

  • Kang, Eugene;Kim, Yumi;Moon, Nankyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.322-333
    • /
    • 2018
  • This study was carried out to measure atmospheric environmental improvement effect and estimate its social benefit of thermal power plants through Environmental Impact Assessment (EIA) for quantitative analysis about operational performances of EIA. In this study, 'EIA outcome' is defined as whether or not the system is implemented, therefore, environmental standard to be followed by each project and consultation contents were compared. In total 60 cases of thermal power plant construction projects that have been consulted over the past 10 years since 2010, major air pollutants have been significantly reduced after the implementation of EIA. The $PM_{10}$ reduced annual 3,745 tons, $NO_2$ by 74,569 tons, and $SO_2$ by 37,647 tons, which were estimated at approximately 240 billion won~5 trillion 967 billion won per year for social benefit. This means the total cost of power plant operations will be cut to 7 trillion 192 billion won~178 trillion 994 billion won over a 30-year period. The reduced amount of air pollutants emitted by energy generation facilities across the country is worth 50%, and its economic value is larger than the annual Current Health Expenditure in Korea. This is meant by the fact that all projects are subject to uniform criteria under the existing relevant regulation, but that each project plans are optimized according to the characteristics of target areas and projects through the process of EIA.

The Actual State and Improvement Proposal for Shading Structures in Korean Ginseng Fields (인삼재배시설의 실태 및 개선방안)

  • Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.114-120
    • /
    • 2003
  • In order to provide fundamental data for development of controlled environment facilities in Korean ginseng (Panax ginseng C.A. Meyer) cultivation, field survey and analysis of structural and environmental engineering characteristics on the shading structures in ginseng fields (the ginseng houses) were carried out. In this study shading structures for ginseng cultivation were classified according to their structural materials, connection types, and detailed structures. That is they were classified into wood or steel frames, single or multi spans, and frame or cable types. As a result of the investigation, standardization of structural materials, fabrication and construction methods arc required. And it was considered that a reinforced design and a countermeasure for heavy snow are the most important matters for structural improvement. In parts of the environmental management, researches for setting up the irrigation standard are required in the first place. And it was investigated that an installation of the shading structures is a work being the most hard, taking a lot of time, and having need for automation. So controlled environment ginseng houses, with a low cost, a structural safety and a satisfactory workability, should be developed.

Experimental Study on Improvement of Pipe-rack Joint (Pipe-rack접합부 개선방법에 관한 실험적 연구)

  • Lee, Jong-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • The development of new technology and process in industrial Plant which builds integrated structures, facilities and systems. Has become a key element for strengthening its competitiveness. Although domestic industrial Plant has demonstrated excellence in technology with a persistent increase in order quantity and orders received, the technology gap between countries has narrowed due to global construction trend. Therefore, it is necessary to develop new technology that could help overcome constraints and limitations of the current one to follow the trend in the age of unlimited competition. This study has focused on assembly technology of Pipe-rack joint connection in an effort to strengthen technological competitiveness in industrial Plant. Through an analysis of earlier studies on Pipe-rack and a coMParative analysis of strengths and weaknesses of current assembly technology of it, a new design plan has been made to improve it efficiently. In doing this, standards for design factors of both structural and performance features have been drawn, and value of stress, strain, moment and rotation has been calculated using finite element analysis. As a result, installation technology of modular type Pipe-rack, which has not been developed in Korea and is differentiated from the current one, has been developed. It is considered that the technology reduces work time and saves cost due to simplified joint connection of steel structure, unlike the current one. Moreover, since it is installed without a welding process in the field, industrial accidents would be reduced, which is likely to have economic competitiveness and satisfy.

A Study on Curriculum Development in the Dental Technology Department of a Vocational Junior College (전문대학 치기공과 교육과정 개발에 관한 연구)

  • Kim, Joo-Tae
    • Journal of Technologic Dentistry
    • /
    • v.6 no.1
    • /
    • pp.31-86
    • /
    • 1984
  • The educational purpose of a junior college is believed to be to effectively train and produce professional workers equipped with the knowledge and skills required in various technical fields of modern society. Since dental technology takes its share of an important role through the enhancement of people's health and the construction of a whlfare society, the prosthodontia department is imposed with a great responsibility to train highly skilled, responsible dental technicians who will meet the social demands. To attain this goal, those who are in charge of the training and education should place emphasis on the development of better educational programs. In other words, the present curriculum which is lacking in many comprehensive aspects, is not satisfactory to provide the students with the required know-how and qualities. As is known, a currculum is the detailed guidance to the efficient operation of an educational program, and that of dental technology is not an exception. In addition, dental technology requires very detailed programs in training, because it requires both diversified and comprehensive application of serveral different fields. The following are the main points to be taken into consideration in developing an effective curriculum for this department. 1. The curriculum should be gradually expanded so that the fundamental subjects will contain principal theories which can be directly applied to the specified majoring subjects. 2. An effective arrangement of time tables should be provided so that basic practice and experiments can be conducted in direct connection with the leatures on the basic theories. 3. For a creative and up-to-date curriculum to help cope with the problems in achieving the aims of technological development and scientific education, intensive and extensive studies should be done on the curricula developed in the advanced countries. 4. The specific majoring subjects should be rearranged to contain new theories which are beneficial to dental technology. As an institution which is spearheaded for ondustrial-educational cooperation, the Junior collegeis role demands that the department should make every possible effect to cultivate highly-skilled technicisns. The following suggestions are made to help work out an ideal curriculum. 1. The basic theory subjects should be selected with consideration toward closely related majoring subjects. 2. The curriculum should be efficiently operated to effectively relate theories with experiments. 3. Subject importance must be rearranged ; It has been found that the ideal proportion of cultural, elective and required subjects is 20%, 20% and 60% respectively. 4. The credit allotments should be reconsidered: The total credits required for completion should preferably be 80; 16 for the cultural and the elective subjects respectively and 48 for the required subject. 5. A Commissioned education system should be formalized for strengthening industrial educational cooperation. 6. Experiments and practice should be intensified with the support of improved laboratory facilities. 7. The training period should be expanded form the present two years to three of four years, in order to produce more highly qualified technicians.

  • PDF