• Title/Summary/Keyword: Construction Analysis

Search Result 15,928, Processing Time 0.048 seconds

Jeonghyesa Temple reconstructed at Yesan by Mangong and the meaning of the creation of the stone standing Avalokiteśvara statue during the Japanese colonial period (일제강점기 만공(滿空)의 예산 정혜사 중창과 석조관음보살입상 조성의 의미)

  • Lee Jumin
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.1
    • /
    • pp.22-43
    • /
    • 2023
  • This paper deals with the stone standing Avalokitesvara statue in Jeonghyesa Temple that was created by Mangong in 1924. The stone standing Avalokitesvara statue of Jeonghyesa Temple is the earliest extant Buddha statue produced by Mangong, and symbolism was given to Jeonghyesa in the process of its reconstruction. So far, there has been no study that has approached ideas and beliefs through Buddhist studies led by Mangong and specific relics. In order to proceed with this study, Mangong's legal words and anecdotes and newspaper articles during the Japanese colonial era were used to trace the dynamics of Jeonghyesa and Sudeoksa during Mangong's reign, and to investigate the effects obtained from the creation of the large Bodhisattva statue and the meaning of its location. In addition, an interview was attempted with the descendants of master, who were in charge of the sculpture at the time, to confirm the exact construction period and the list of craftsmen. It is judged that the stone standing Bodhisattva statue of Gwanchoksa Temple has been influenced by the double covering and square crown seen in the standing stone statue of Avalokitesvara Bodhisattva of Jeonghyesa Temple, the large hands compared to the body, the proportion between the head and the body, and the sense of enormity felt in the body like a stone pillar. Therefore, we looked at how the standing stone Bodhisattva statue of Gwanchoksa Temple, which was produced in the early Goryeo Dynasty, could have influenced the creation of the Bodhisattva statue in the modern period. A multilateral analysis was attempted on how the image of the Gwanchoksa Bodhisattva statue, which was used as a symbol representing Chungcheongnam-do in the Chosun Exposition held in 1929 and the visit to Gwanchoksa Temple, which began with the laying of the railroad during the Japanese colonial period, was used from the viewpoint of the succession and transformation of the style. With this study as an opportunity, it is hoped that the understanding of the prehistoric Mangong representing the modern period and the horizon of Korean Buddhist sculpture research in the modern period will be broadened.

Introduction of the Best Practices in the Pakistan Gulpur HEPP (파키스탄 Gulpur 수력발전 현장의 Best Practices 소개)

  • JANG, Ock Jae;HONG, Won Pyo;CHAE, Hee Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.216-217
    • /
    • 2022
  • Gulpur 수력발전 프로젝트는 전력난을 겪고 있는 파키스탄에 102 MW 규모의 수력발전소를 건설하여 30년 동안 운영 관리한 후 파키스탄 정부로 양도하는 IPP(Independent Power Producing) 형식의 투자사업이다. 남동발전과 DL E&C, 롯데건설이 Sponsor로서 출자한 자본금과, ADB, IFC, K-EXIM 등의 대주단로부터의 차입금을 재원으로 하여 소요 사업비를 조달하고 사업을 개발하였다. DL E&C와 롯데건설이 EPC(Engineering, Procurement, Construction)를 수행하였고, 이산이 Design consultant의 역할을 수행하였다. Gulpur 수력발전 프로젝트의 발전형식은 수로식(run-of-river)으로 201 m3/s의 발전유량과 102 MW의 발전 시설용량을 이용하여 연평균예상발전량은 398 GWh이다. 주요 구조물로는 설계 재현빈도 1년의 유수전환시설(가물막이댐 & 가배수터널)과 콘크리트 중력식댐(H 67 m, L 205 m), 도수터널(D 6.7 m, L 215 m, 2기), 옥외형 발전소 (H 51 m, W 60 m, L 38 m, Kaplan 2기)가 있으며, 2015년 10월 착공하여 2020년 3월 상업발전을 시작하였다. 본 프로젝트는 DL E&C의 첫 번째 EPC 해외수력발전 프로젝트이다. 따라서 프로젝트의 성공적 수행을 위한 경제적 설계, 시공의 효율성 및 안정성 확보 등을 위하여 많은 연구를 수행하는 과정에서 다양한 기술 개선을 이룰 수 있었다. 본고에서는 Gulpur 프로젝트를 통하여 도출된 성공 사례들을 소개 및 공유하고자 한다. 첫 번째로 콘크리트 중력식댐 시공을 위한 유수전환시설의 최적 설계빈도를 산정하였다. 일반적으로 유수전환시설의 규모는 설계기준에 제시된 설계 재현빈도를 이용하는데, 해외 설계기준에서는 10년, 국내 설계기준에서는 1~2년으로 다르게 제시되어 있는 문제점이 있다. 유수전환시설의 규모는 프로젝트의 경제성에 큰 영향을 미치기 때문에 최적 설계빈도의 결정이 필요하며, 위험도분석기법(Risk Analysis)과 기대화폐가치법(Expected Monetary Value)을 이용하여 유수전환시설의 최적 설계 재현빈도와 이에 영향을 미치는 인자를 분석하였다. 위험도는 몬테카를로 시뮬레이션으로 산정된 가물막이댐 파괴확률과 재현빈도를 이용하여 산정된 가물막이댐 월류확률을 고려하였으며, 비용 및 피해액으로는 유수전환시설의 공사비, 가물막이댐 파괴시의 재건설비용과 지체보상금, 가물막이댐 월류시의 복구비용을 고려하였다. 이에 대한 연구결과로, 유수전환시설의 사용기간과 월류시의 복구비용이 유수전환시설의 설계 재현기간 결정에 가장 큰 영향을 미치는 것으로 나타났고, 특히 월류시의 복구비용이 작을수록 낮은 설계 재현빈도를 선택하는 것이 타당한 것으로 나타났다. 예를 들어, 유수전환시설의 사용기간이 3 ~ 5년, 복구비용이 0.5 ~ 1.0 mil USD 이하인 조건에서 가물막이시설의 최적 설계빈도는 1년 ~ 2년인 것으로 나타났다. 또한, 유수전환시설의 사용기간은 본댐의 규모와 시공기간 등을 고려하여 결정되는 사항으로 설계자가 임의 조정할 수 없지만, 복구비용은 시공 관리자에 따라 결정되는 부분으로, 적극적 홍수 피해 저감 및 복구방안을 마련하는 것이 프로젝트의 경제성을 향상시킬 수 있다는 것을 알 수 있었다. 두 번째로 프로젝트의 경제성 향상, 홍수기 댐 시공시의 안전성 확보를 위하여 홍수 조기경보시스템(Early Warning System)을 개발 및 활용하였다. 수로식(Run-of-river) 수력발전댐은 대부분 산악지역에 위치하기 때문에 국지성 강우 및 급한 지형 경사로 인하여 돌발홍수(flash flood)의 발생 가능성이 높다. 따라서 시공 중 홍수(월류) 발생을 미리 감지하고 현장에 전파할 수 있는, 수로식(Run-of-river) 수력발전댐 현장을 위한 홍수 조기경보시스템이 필요하며, 이를 리스크 인식, 모니터링 및 경보, 전파 및 연락, 반응 능력 향상의 4가지 부분으로 나누어 구축하였다. 리스크 인식 부분에서는 가물막이댐 월류 발생 상황에 대한 위험도, 취약성, 리스크를 제시하였으며, 모니터링 및 경보 부분에서는 상류 측정수위에서 유도된 현장 예상수위와 실제 현장 측정 수위를 대상으로 경보홍수위와 위험홍수위로 나누어 관리하였다. 전파 및 연락 부분에서는 현장 시공 조직을 활용하여 홍수시를 대비한 비상연락체계도(Emergency communication flow chart)를 운영하였으며, 반응 능력 향상을 위해 비상연락체계도의 팀별 Action plan을 상세화 하였다. 세 번째로 현장의 지질특성과 50여 차례 발파시험으로 현장 고유의 발파진동감쇄곡선을 도출하였으며, 이를 통해 현장의 시공성과 콘크리트 품질 확보를 동시에 달성할 수 있는 방안을 제시하였다. 콘크리트댐 공사에서는 제한된 공기 내에 공사를 완료하기 위해 사면부 굴착과 콘크리트 타설이 동시에 수행될 수밖에 없는 문제점을 가지고 있다. 그러나 신규 콘크리트 타설면 근처에서 발파를 수행하는 경우 발파로 발생되는 탄성파가 일정 수준을 초과하게 되면, 콘크리트 양생에 영향을 주게 된다. 따라서 다수의 현장 발파시험을 통해 발파거리와 최대진동속도의 상관관계 즉, 발파진동감쇄곡선을 도출함으로써 현장의 발파진동특성을 도출할 수 있었다. 또한, 기존 연구 논문들을 통해 콘크리트 재령기간 별 안전진동속도를 선정하고, 해당 안전진동속도를 초과하지 않는 범위에서 콘크리트 타설면과 발파위치의 거리에 따라 1회 발파 가능한 장약량을 산정하여 적용하였다. 이와 같은 체계적인 접근을 통해 콘크리트 타설과 발파 작업 동시 수행에 대한 논란을 해소할 수 있었다.

  • PDF

A study on performance evaluation of fiber reinforced concrete using PET fiber reinforcement (PET 섬유 보강재를 사용한 섬유 보강 콘크리트의 성능 평가에 관한 연구)

  • Ri-On Oh;Yong-Sun Ryu;Chan-Gi Park;Sung-Ki Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.261-283
    • /
    • 2023
  • This study aimed to review the performance stability of PET (Polyethylene terephthalate) fiber reinforcing materials among the synthetic fiber types for which the application of performance reinforcing materials to fiber-reinforced concrete is being reviewed by examining short-term and long-term performance changes. To this end, the residual performance was analyzed after exposing the PET fiber to an acid/alkali environment, and the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture by age were analyzed, and the surface of the PET fiber collected from the concrete specimen was examined using a scanning microscope (SEM). The changes in were analyzed. As a result of the acid/alkali environment exposure test of PET fiber, the strength retention rate was 83.4~96.4% in acidic environment and 42.4~97.9% in alkaline environment. It was confirmed that the strength retention rate of the fiber itself significantly decreased when exposed to high-temperature strong alkali conditions, and the strength retention rate increased in the finished yarn coated with epoxy. In the test results of the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture, no reduction in flexural strength was found, and the equivalent flexural strength result also did not show any degradation in performance as a fiber reinforcement. Even in the SEM analysis results, no surface damage or cross-sectional change of the PET reinforcing fibers was observed. These results mean that no damage or cross-section reduction of PET reinforcing fibers occurs in cement concrete environments even when fiber-reinforced concrete is exposed to high temperatures in the early stage or depending on age, and the strength of PET fibers decreases in cement concrete environments. The impact is judged to be of no concern. As the flexural strength and equivalent flexural strength according to age were also stably expressed, it could be seen that performance degradation due to hydrolysis, which is a concern due to the use of PET fiber reinforcing materials, did not occur, and it was confirmed that stable residual strength retention characteristics were exhibited.

Fish Community Characteristics and Distribution Aspect of Rhodeus pseudosericeus(Cyprinidae) in the Geumdangcheon(Stream), a Tributary of the Hangang Drainage System of Korea (한강 지류 금당천의 어류군집 특징과 멸종위기종 한강납줄개의 서식양상)

  • Mee-Sook Han;Myeong-Hun Ko
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.2
    • /
    • pp.151-162
    • /
    • 2023
  • This study investigated the characteristics of fish communities and inhabiting status of the endangered species, Rhodeus pseudosericeus, in the Geumdang Stream in Korea from March to October 2021. A total of 1,698 fish in 5 families and 25 species were collected from 7 survey stations during the survey period. The dominant species was Zacco platypus (relative abundance, 46.5%), and the subdominant species was Squalidus gracilis majimae (16.7%), followed by Rhynchocypris oxycephalus (12.0%), Z. koreanus (5.7%), Pungtungia herzi (3.2%), R. pseudosericeus (2.0%), R. notatus (1.9%), and Acheilognathus rhombeus (1.8%). Nine Korean endemic species (36.0%) were collected, including R. pseudosericeus, R. uyekii, Sarcocheilichthys variegatus wakiyae, Microphysogobio yaluensis, S. gracilis majimae, Z. koreanus, Cobitis nalbanti, Iksookimia koreensis, and Odontobutis interrupta. An exotic species, Micropterus salmoides, designated as an invasive alien species (IAS), was collected downstream. The investigation of the habitat patterns of the endangered species (class II), Rhodeus pseudosericeus, showed a habitat range of about 6 to 7 km in the middle of Geumdang Stream (RP-1 to RP-4), and this species inhabited the edge with water depths of 0.3 through 1.0 m with slow water flow and many aquatic plants. According to the community analysis results, the overall dominance and evenness indexes were low, while diversity and richness indexes were high, and the cluster structure was largely divided into upstream and middle-downstream areas. The river health (fish assessment index) evaluated using fish was assessed as good (3 stations), normal (3 stations), and bad (1 station), and water quality was evaluated as good both upstream and downstream. Compared to previous studies, the number of species was relatively similar, and among the species that appeared in the past, 13 species did not appear in this survey, while 6 species appeared for the first time in this survey. Disturbance factors included river construction, many weirs, and the appearance of the ecosystem-disturbing species, M. salmoides. Since Geumdang Strem has high conservation value because it is home to many species in the Acheilognathinae subfamily, including the endangered species R. pseudosericeus, continuous attention and systematic conservation measures are required.

Behavior Analysis of Concrete Structure under Blast Loading : (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 슬래브의 실험결과)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Cho, Yun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.565-575
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast load is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, normal strength concrete structures require higher strength to improve their resistance against impact and blast loads. Therefore, a new material with high-energy absorption capacity and high resistance to damage is needed for blast resistance design. Recently, Ultra High Strength Concrete(UHSC) and Reactive Powder Concrete(RPC) have been actively developed to significantly improve concrete strength. UHSC and RPC, can improve concrete strength, reduce member size and weight, and improve workability. High strength concrete are used to improve earthquake resistance and increase height and bridge span. Also, UHSC and RPC, can be implemented for blast resistance design of infrastructure susceptible to terror or impact such as 9.11 terror attack. Therefore, in this study, the blast tests are performed to investigate the behavior of UHSC and RPC slabs under blast loading. Blast wave characteristics including incident and reflected pressures as well as maximum and residual displacements and strains in steel and concrete surface are measured. Also, blast damages and failure modes were recorded for each specimen. From these tests, UHSC and RPC have shown to better blast explosions resistance compare to normal strength concrete.

Behavior Analysis of Concrete Structure under Blast Loading : (I) Experiment Procedures (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (I) 실험수행절차)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Choi, Jong Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.557-564
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast overpressure is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, information and test results related to the blast experiment of internal and external have been limited due to military and national security reasons. Therefore, in this paper, to evaluate blast effect on reinforced have concrete structure and its protective performance, blast tests are carried out with $1.0m{\times}1.0m{\times}150mm$ reinforce concrete slab structure at the Agency for Defence Development. The standoff blast distance is 1.5 m and the preliminary tests consists with TNT 9 lbs and TNT 35 lbs and the main tests used ANFO 35 lbs. It is the first ever blast experiment for nonmilitary purposes domestically. In this paper, based on the basic experiment procedure and measurement details for acquiring structural behavior data, the blast experimental measurement system and procedure are established details. The procedure of blast experiments are based on the established measurement system which consists of sensor, signal conditioner, DAQ system, software. It can be used as basic research references for related research areas, which include protective design and effective behavior measurements of structure under blast loading.

Analysis of Co- and Post-Seismic Displacement of the 2017 Pohang Earthquake in Youngilman Port and Surrounding Areas Using Sentinel-1 Time-Series SAR Interferometry (Sentinel-1 시계열 SAR 간섭기법을 활용한 영일만항과 주변 지역의 2017 포항 지진 동시성 및 지진 후 변위 분석)

  • Siung Lee;Taewook Kim;Hyangsun Han;Jin-Woo Kim;Yeong-Beom Jeon;Jong-Gun Kim;Seung Chul Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.19-31
    • /
    • 2024
  • Ports are vital social infrastructures that significantly influence both people's lives and a country's economy. In South Korea, the aging of port infrastructure combined with the increased frequency of various natural disasters underscores the necessity of displacement monitoring for safety management of the port. In this study, the time-series displacements of Yeongilman Port and surrounding areas in Pohang, South Korea, were measured by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to Sentinel-1 SAR images collected from the satellite's ascending (February 2017-July 2023) and descending (February 2017-December 2021) nodes, and the displacement associated with the 2017 Pohang earthquake in the port was analyzed. The southern (except the southernmost) and central parts of Yeongilman Port showed large displacements attributed to construction activities for about 10 months at the beginning of the observation period, and the coseismic displacement caused by the Pohang earthquake was up to 1.6 cm of the westward horizontal motion and 0.5 cm of subsidence. However, little coseismic displacement was observed in the southernmost part of the port, where reclamation was completed last, and in the northern part of the oldest port. This represents that the weaker the consolidation of the reclaimed soil in the port, the more vulnerable it is to earthquakes, and that if the soil is very weakly consolidated due to ongoing reclamation, it would not be significantly affected by earthquakes. Summer subsidence and winter uplift of about 1 cm have been repeatedly observed every year in the entire area of Yeongilman Port, which is attributed to volume changes in the reclaimed soil due to temperature changes. The ground of the 1st and 2nd General Industrial Complexes adjacent to Yeongilman Port subsided during the observation period, and the rate of subsidence was faster in the 1st Industrial Complex. The 1st Industrial Complex was observed to have a westward horizontal displacement of 3 mm and a subsidence of 6 mm as the coseismic displacement of the Pohang earthquake, while the 2nd Industrial Complex was analyzed to have been little affected by the earthquake. The results of this study allowed us to identify the time-series displacement characteristics of Yeongilman Port and understand the impact of earthquakes on the stability of a port built by coastal reclamation.

A Study on Predicting the Logistics Demand of Inland Ports on the Yangtze River (장강 내수로 항만의 물류 수요 예측에 관한 연구)

  • Zhen Wu;Hyun-Chung Kim
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.217-242
    • /
    • 2023
  • This study aims to analyze the factors influencing the logistics demand of inland ports along the Yangtze River and predict future port logistics demand based on these factors. The logistics demand prediction using system dynamics techniques was conducted for a total of six ports, including Chongqing and Yibin ports in the upper reaches, Jingzhou and Wuhan ports in the middle reaches, and Nanjing and Suzhou ports in the lower reaches of the Yangtze River. The logistics demand for all ports showed an increasing trend in the mid-term prediction until 2026. The logistics demand of Chongqing port was mainly influenced by the scale of the hinterland economy, while Yibin port appeared to heavily rely on the level of port automation. In the case of the upper and middle reach ports, logistics demand increased as the energy consumption of the hinterland increased and the air pollution situation worsened. The logistics demand of the middle reach ports was greatly influenced by the hinterland infrastructure, while the lower reach ports were sensitive to changes in the urban construction area. According to the sensitivity analysis, the logistics demand of ports relying on large cities was relatively stable against the increase and decrease of influential factors, while ports with smaller hinterland city scales reacted sensitively to changes in influential factors. Therefore, a strategy should be established to strengthen policy support for Chongqing port as the core port of the upper Yangtze River and have surrounding ports play a supporting role for Chongqing port. The upper reach ports need to play a supporting role for Chongqing port and consider measures to enhance connections with middle and lower reach ports and promote the port industry. The development strategy for inland ports along the Yangtze River suggests the establishment of direct routes and expansion of the transportation network for South Korean ports and stakeholders. It can suggest expanding the hinterland network and building an efficient transportation system linked with the logistics hub. Through cooperation, logistics efficiency can be enhanced in both regions, which will contribute to strengthening the international position and competitiveness of each port.

Test of Independence Between Variables to Estimate the Frequency of Damage in Heat Pipe (열수송관 파손빈도 추정을 위한 변수간 독립성 검정)

  • Myeongsik Kong;Jaemo Kang;Sungyeol Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.61-67
    • /
    • 2023
  • Heat pipes located underground in urban areas and operated under high temperature and pressure conditions can cause large-scale human and economic damage if damaged. In order to predict damage in advance, damage and construction information of heat pipe are analyzed to derive independent variables that have a correlation with frequency of damage, and a simple regression analysis modified model using each variable is applied to the field. However, as the correlation between independent variables applied to the model increases, the independence between variables is harmed and the reliability of the model decreases. In this study, the independence of the pipe diameter, burial depth, insulation level of monitoring system, and disconnection or short circuit of the detection line, which are judged to be interrelated, was tested to derive a method for combining variables and setting categories necessary to apply to the frequency of damage estimation model. For the test of independence, the continuous variables pipe diameter and burial depth were each converted into three categories, insulation level of monitoring system was converted into two categories, and the categorical variable disconnection or short circuit of the detection line status was kept as two categories. As a result of the test of independence, p-value between pipe diameter and burial depth, level of monitoring system and disconnection or short circuit of the detection line was lower than the significance level (α = 0.05), indicating a large correlation between them. Therefore, the pipe diameter and burial depth were combined into one variable, and the categories of the combined variable were set to 9 considering the previously set categories. The insulation level of monitoring system and the disconnection or short circuit of the detection line were also combined into one variable. Since the insulation level is unreliable when the detection line status is disconnection or short circuit, the categories of the combined variable were set to 3.

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.